|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: BERT_without_preprocessing_grid_search |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BERT_without_preprocessing_grid_search |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6213 |
|
- Precision: 0.8399 |
|
- Recall: 0.8622 |
|
- F1: 0.8498 |
|
- Accuracy: 0.8798 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 257 | 0.6305 | 0.7254 | 0.8018 | 0.7512 | 0.8180 | |
|
| 0.8689 | 2.0 | 514 | 0.4877 | 0.8120 | 0.8500 | 0.8245 | 0.8667 | |
|
| 0.8689 | 3.0 | 771 | 0.4490 | 0.7911 | 0.8590 | 0.8148 | 0.8599 | |
|
| 0.2702 | 4.0 | 1028 | 0.4748 | 0.8291 | 0.8689 | 0.8457 | 0.8730 | |
|
| 0.2702 | 5.0 | 1285 | 0.5217 | 0.8326 | 0.8543 | 0.8413 | 0.8783 | |
|
| 0.1505 | 6.0 | 1542 | 0.5288 | 0.8351 | 0.8650 | 0.8481 | 0.8754 | |
|
| 0.1505 | 7.0 | 1799 | 0.5801 | 0.8417 | 0.8585 | 0.8487 | 0.8769 | |
|
| 0.092 | 8.0 | 2056 | 0.5721 | 0.8402 | 0.8694 | 0.8535 | 0.8818 | |
|
| 0.092 | 9.0 | 2313 | 0.6135 | 0.8453 | 0.8618 | 0.8522 | 0.8808 | |
|
| 0.0723 | 10.0 | 2570 | 0.6213 | 0.8399 | 0.8622 | 0.8498 | 0.8798 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|