--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_without_preprocessing_grid_search results: [] --- # BERT_without_preprocessing_grid_search This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6213 - Precision: 0.8399 - Recall: 0.8622 - F1: 0.8498 - Accuracy: 0.8798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 257 | 0.6305 | 0.7254 | 0.8018 | 0.7512 | 0.8180 | | 0.8689 | 2.0 | 514 | 0.4877 | 0.8120 | 0.8500 | 0.8245 | 0.8667 | | 0.8689 | 3.0 | 771 | 0.4490 | 0.7911 | 0.8590 | 0.8148 | 0.8599 | | 0.2702 | 4.0 | 1028 | 0.4748 | 0.8291 | 0.8689 | 0.8457 | 0.8730 | | 0.2702 | 5.0 | 1285 | 0.5217 | 0.8326 | 0.8543 | 0.8413 | 0.8783 | | 0.1505 | 6.0 | 1542 | 0.5288 | 0.8351 | 0.8650 | 0.8481 | 0.8754 | | 0.1505 | 7.0 | 1799 | 0.5801 | 0.8417 | 0.8585 | 0.8487 | 0.8769 | | 0.092 | 8.0 | 2056 | 0.5721 | 0.8402 | 0.8694 | 0.8535 | 0.8818 | | 0.092 | 9.0 | 2313 | 0.6135 | 0.8453 | 0.8618 | 0.8522 | 0.8808 | | 0.0723 | 10.0 | 2570 | 0.6213 | 0.8399 | 0.8622 | 0.8498 | 0.8798 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3