Leotrim's picture
Update README.md
32ab728 verified
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.93
          - name: Precision
            type: precision
            value: 0.9386363636363637
          - name: Recall
            type: recall
            value: 0.93
          - name: F1
            type: f1
            value: 0.9311080732133363
pipeline_tag: audio-classification

Visualize in Weights & Biases

ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3715
  • Accuracy: 0.93
  • Precision: 0.9386
  • Recall: 0.93
  • F1: 0.9311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8552 1.0 57 0.5962 0.83 0.8693 0.83 0.8207
0.448 2.0 114 0.5167 0.85 0.8736 0.85 0.8534
0.1634 3.0 171 0.5433 0.86 0.8780 0.86 0.8570
0.1673 4.0 228 0.4743 0.88 0.8836 0.88 0.8769
0.0065 5.0 285 0.4956 0.91 0.9212 0.91 0.9060
0.0279 6.0 342 0.5635 0.89 0.8971 0.89 0.8879
0.104 7.0 399 0.6799 0.86 0.8832 0.86 0.8564
0.001 8.0 456 0.4927 0.91 0.9246 0.91 0.9109
0.0002 9.0 513 0.3899 0.92 0.9245 0.92 0.9187
0.0002 10.0 570 0.3715 0.93 0.9386 0.93 0.9311
0.0002 11.0 627 0.4695 0.92 0.9245 0.92 0.9180
0.0001 12.0 684 0.4150 0.93 0.9370 0.93 0.9291
0.0468 13.0 741 0.4483 0.92 0.9294 0.92 0.9182
0.0001 14.0 798 0.3852 0.93 0.9334 0.93 0.9288

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1