--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.93 - name: Precision type: precision value: 0.9386363636363637 - name: Recall type: recall value: 0.93 - name: F1 type: f1 value: 0.9311080732133363 pipeline_tag: audio-classification --- [Visualize in Weights & Biases](https://wandb.ai/raspuntinov_ai/huggingface/runs/igv2809l) # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3715 - Accuracy: 0.93 - Precision: 0.9386 - Recall: 0.93 - F1: 0.9311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8552 | 1.0 | 57 | 0.5962 | 0.83 | 0.8693 | 0.83 | 0.8207 | | 0.448 | 2.0 | 114 | 0.5167 | 0.85 | 0.8736 | 0.85 | 0.8534 | | 0.1634 | 3.0 | 171 | 0.5433 | 0.86 | 0.8780 | 0.86 | 0.8570 | | 0.1673 | 4.0 | 228 | 0.4743 | 0.88 | 0.8836 | 0.88 | 0.8769 | | 0.0065 | 5.0 | 285 | 0.4956 | 0.91 | 0.9212 | 0.91 | 0.9060 | | 0.0279 | 6.0 | 342 | 0.5635 | 0.89 | 0.8971 | 0.89 | 0.8879 | | 0.104 | 7.0 | 399 | 0.6799 | 0.86 | 0.8832 | 0.86 | 0.8564 | | 0.001 | 8.0 | 456 | 0.4927 | 0.91 | 0.9246 | 0.91 | 0.9109 | | 0.0002 | 9.0 | 513 | 0.3899 | 0.92 | 0.9245 | 0.92 | 0.9187 | | 0.0002 | 10.0 | 570 | 0.3715 | 0.93 | 0.9386 | 0.93 | 0.9311 | | 0.0002 | 11.0 | 627 | 0.4695 | 0.92 | 0.9245 | 0.92 | 0.9180 | | 0.0001 | 12.0 | 684 | 0.4150 | 0.93 | 0.9370 | 0.93 | 0.9291 | | 0.0468 | 13.0 | 741 | 0.4483 | 0.92 | 0.9294 | 0.92 | 0.9182 | | 0.0001 | 14.0 | 798 | 0.3852 | 0.93 | 0.9334 | 0.93 | 0.9288 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1