|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indian_names |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: my_awesome_wnut_model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: indian_names |
|
type: indian_names |
|
config: indian_names |
|
split: train |
|
args: indian_names |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9941348973607038 |
|
- name: Recall |
|
type: recall |
|
value: 0.9921951219512195 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9931640625 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9998052125131481 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_wnut_model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the indian_names dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0012 |
|
- Precision: 0.9941 |
|
- Recall: 0.9922 |
|
- F1: 0.9932 |
|
- Accuracy: 0.9998 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 63 | 0.1413 | 0.0 | 0.0 | 0.0 | 0.9745 | |
|
| No log | 2.0 | 126 | 0.1211 | 0.0 | 0.0 | 0.0 | 0.9745 | |
|
| No log | 3.0 | 189 | 0.0656 | 0.6231 | 0.2790 | 0.3854 | 0.9811 | |
|
| No log | 4.0 | 252 | 0.0380 | 0.7297 | 0.6059 | 0.6620 | 0.9894 | |
|
| No log | 5.0 | 315 | 0.0259 | 0.8341 | 0.7259 | 0.7762 | 0.9931 | |
|
| No log | 6.0 | 378 | 0.0136 | 0.8842 | 0.8712 | 0.8776 | 0.9963 | |
|
| No log | 7.0 | 441 | 0.0076 | 0.9286 | 0.9268 | 0.9277 | 0.9981 | |
|
| 0.0748 | 8.0 | 504 | 0.0054 | 0.9409 | 0.9473 | 0.9441 | 0.9985 | |
|
| 0.0748 | 9.0 | 567 | 0.0042 | 0.9520 | 0.9678 | 0.9598 | 0.9991 | |
|
| 0.0748 | 10.0 | 630 | 0.0025 | 0.9738 | 0.9795 | 0.9767 | 0.9995 | |
|
| 0.0748 | 11.0 | 693 | 0.0019 | 0.9863 | 0.9863 | 0.9863 | 0.9997 | |
|
| 0.0748 | 12.0 | 756 | 0.0015 | 0.9961 | 0.9912 | 0.9936 | 0.9998 | |
|
| 0.0748 | 13.0 | 819 | 0.0014 | 0.9912 | 0.9912 | 0.9912 | 0.9998 | |
|
| 0.0748 | 14.0 | 882 | 0.0013 | 0.9912 | 0.9912 | 0.9912 | 0.9998 | |
|
| 0.0748 | 15.0 | 945 | 0.0012 | 0.9941 | 0.9922 | 0.9932 | 0.9998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|