Bert-NER / README.md
Kriyans's picture
End of training
4a9d8a2
|
raw
history blame
2.11 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Bert-NER
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ner
          type: ner
          config: indian_names
          split: train
          args: indian_names
        metrics:
          - name: Precision
            type: precision
            value: 0.9986185030007927
          - name: Recall
            type: recall
            value: 0.9989804934411745
          - name: F1
            type: f1
            value: 0.998799465422339
          - name: Accuracy
            type: accuracy
            value: 0.9994169549500524

Bert-NER

This model is a fine-tuned version of distilbert-base-uncased on the ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0020
  • Precision: 0.9986
  • Recall: 0.9990
  • F1: 0.9988
  • Accuracy: 0.9994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0068 1.03 500 0.0054 0.9976 0.9944 0.9960 0.9980
0.0076 2.06 1000 0.0020 0.9986 0.9990 0.9988 0.9994

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1