Kriyans commited on
Commit
4a9d8a2
1 Parent(s): ece3383

End of training

Browse files
Files changed (1) hide show
  1. README.md +12 -13
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9991846071958415
29
  - name: Recall
30
  type: recall
31
- value: 0.9994449353179727
32
  - name: F1
33
  type: f1
34
- value: 0.9993147543026067
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9996441930208012
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0011
48
- - Precision: 0.9992
49
- - Recall: 0.9994
50
- - F1: 0.9993
51
- - Accuracy: 0.9996
52
 
53
  ## Model description
54
 
@@ -67,7 +67,7 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 1e-05
71
  - train_batch_size: 32
72
  - eval_batch_size: 32
73
  - seed: 42
@@ -79,9 +79,8 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 486 | 0.0021 | 0.9985 | 0.9984 | 0.9985 | 0.9992 |
83
- | 0.0018 | 2.0 | 972 | 0.0013 | 0.9989 | 0.9993 | 0.9991 | 0.9995 |
84
- | 0.0018 | 3.0 | 1458 | 0.0011 | 0.9992 | 0.9994 | 0.9993 | 0.9996 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9986185030007927
29
  - name: Recall
30
  type: recall
31
+ value: 0.9989804934411745
32
  - name: F1
33
  type: f1
34
+ value: 0.998799465422339
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9994169549500524
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0020
48
+ - Precision: 0.9986
49
+ - Recall: 0.9990
50
+ - F1: 0.9988
51
+ - Accuracy: 0.9994
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
  - train_batch_size: 32
72
  - eval_batch_size: 32
73
  - seed: 42
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0068 | 1.03 | 500 | 0.0054 | 0.9976 | 0.9944 | 0.9960 | 0.9980 |
83
+ | 0.0076 | 2.06 | 1000 | 0.0020 | 0.9986 | 0.9990 | 0.9988 | 0.9994 |
 
84
 
85
 
86
  ### Framework versions