metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: test
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.963972882815022
- name: Recall
type: recall
value: 0.9317482110168082
- name: F1
type: f1
value: 0.9475866591916392
- name: Accuracy
type: accuracy
value: 0.9675355765394335
Bert-NER
This model is a fine-tuned version of distilbert-base-cased on the ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0729
- Precision: 0.9640
- Recall: 0.9317
- F1: 0.9476
- Accuracy: 0.9675
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 438 | 0.0865 | 0.9568 | 0.9243 | 0.9403 | 0.9632 |
0.0768 | 2.0 | 876 | 0.0794 | 0.9635 | 0.9277 | 0.9452 | 0.9662 |
0.0515 | 3.0 | 1314 | 0.0729 | 0.9640 | 0.9317 | 0.9476 | 0.9675 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0