End of training
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: distilbert-base-
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# Bert-NER
|
44 |
|
45 |
-
This model is a fine-tuned version of [distilbert-base-
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -67,7 +67,7 @@ More information needed
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
-
- learning_rate:
|
71 |
- train_batch_size: 32
|
72 |
- eval_batch_size: 32
|
73 |
- seed: 42
|
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 438 | 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: distilbert-base-cased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.963972882815022
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9317482110168082
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9475866591916392
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9675355765394335
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# Bert-NER
|
44 |
|
45 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0729
|
48 |
+
- Precision: 0.9640
|
49 |
+
- Recall: 0.9317
|
50 |
+
- F1: 0.9476
|
51 |
+
- Accuracy: 0.9675
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 6e-05
|
71 |
- train_batch_size: 32
|
72 |
- eval_batch_size: 32
|
73 |
- seed: 42
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 438 | 0.0865 | 0.9568 | 0.9243 | 0.9403 | 0.9632 |
|
83 |
+
| 0.0768 | 2.0 | 876 | 0.0794 | 0.9635 | 0.9277 | 0.9452 | 0.9662 |
|
84 |
+
| 0.0515 | 3.0 | 1314 | 0.0729 | 0.9640 | 0.9317 | 0.9476 | 0.9675 |
|
85 |
|
86 |
|
87 |
### Framework versions
|