Kriyans commited on
Commit
449cab1
1 Parent(s): b4fb634

End of training

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9624574848236965
29
  - name: Recall
30
  type: recall
31
- value: 0.9300632384756199
32
  - name: F1
33
  type: f1
34
- value: 0.9459831157565114
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9665913020348451
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # Bert-NER
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0764
48
- - Precision: 0.9625
49
- - Recall: 0.9301
50
- - F1: 0.9460
51
- - Accuracy: 0.9666
52
 
53
  ## Model description
54
 
@@ -67,7 +67,7 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 5e-05
71
  - train_batch_size: 32
72
  - eval_batch_size: 32
73
  - seed: 42
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 438 | 0.0869 | 0.9598 | 0.9263 | 0.9427 | 0.9648 |
83
- | 0.0834 | 2.0 | 876 | 0.0815 | 0.9627 | 0.9280 | 0.9450 | 0.9661 |
84
- | 0.054 | 3.0 | 1314 | 0.0764 | 0.9625 | 0.9301 | 0.9460 | 0.9666 |
85
 
86
 
87
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: distilbert-base-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.963972882815022
29
  - name: Recall
30
  type: recall
31
+ value: 0.9317482110168082
32
  - name: F1
33
  type: f1
34
+ value: 0.9475866591916392
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9675355765394335
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # Bert-NER
44
 
45
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0729
48
+ - Precision: 0.9640
49
+ - Recall: 0.9317
50
+ - F1: 0.9476
51
+ - Accuracy: 0.9675
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 6e-05
71
  - train_batch_size: 32
72
  - eval_batch_size: 32
73
  - seed: 42
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 438 | 0.0865 | 0.9568 | 0.9243 | 0.9403 | 0.9632 |
83
+ | 0.0768 | 2.0 | 876 | 0.0794 | 0.9635 | 0.9277 | 0.9452 | 0.9662 |
84
+ | 0.0515 | 3.0 | 1314 | 0.0729 | 0.9640 | 0.9317 | 0.9476 | 0.9675 |
85
 
86
 
87
  ### Framework versions