metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: train
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.9999768614928964
- name: Recall
type: recall
value: 0.9999305876908838
- name: F1
type: f1
value: 0.9999537240565493
- name: Accuracy
type: accuracy
value: 0.9999695484028137
my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on the ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Precision: 1.0000
- Recall: 0.9999
- F1: 1.0000
- Accuracy: 1.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0405 | 1.0 | 688 | 0.0024 | 0.9962 | 0.9969 | 0.9965 | 0.9980 |
0.0078 | 2.0 | 1376 | 0.0017 | 0.9972 | 0.9989 | 0.9981 | 0.9990 |
0.0024 | 3.0 | 2064 | 0.0004 | 0.9995 | 0.9998 | 0.9997 | 0.9998 |
0.0008 | 4.0 | 2752 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
0.001 | 5.0 | 3440 | 0.0001 | 1.0000 | 0.9999 | 1.0000 | 1.0000 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3