File size: 2,205 Bytes
edbbaaf 97ebcdb edbbaaf 83fe4a1 e641757 edbbaaf 4fea786 e641757 edbbaaf 4fea786 edbbaaf 97ebcdb e641757 edbbaaf ee1e704 2f2f50f edbbaaf e641757 edbbaaf 2f2f50f e641757 edbbaaf 6fd4b09 edbbaaf 4fea786 97ebcdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: train
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.9987202862934734
- name: Recall
type: recall
value: 0.9989804934411745
- name: F1
type: f1
value: 0.9988503729209022
- name: Accuracy
type: accuracy
value: 0.9993990151023617
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bert-NER
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0019
- Precision: 0.9987
- Recall: 0.9990
- F1: 0.9989
- Accuracy: 0.9994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 486 | 0.0038 | 0.9961 | 0.9983 | 0.9972 | 0.9985 |
| 0.0034 | 2.0 | 972 | 0.0024 | 0.9980 | 0.9990 | 0.9985 | 0.9992 |
| 0.0041 | 3.0 | 1458 | 0.0019 | 0.9987 | 0.9990 | 0.9989 | 0.9994 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|