SuPar-Kanbun / README.md
KoichiYasuoka's picture
universal_dependencies
3b0aa2e
---
language:
- "lzh"
tags:
- "classical chinese"
- "literary chinese"
- "ancient chinese"
- "token-classification"
- "pos"
datasets:
- "universal_dependencies"
license: "mit"
pipeline_tag: "token-classification"
widget:
- text: "不入虎穴不得虎子"
---
[![Current PyPI packages](https://badge.fury.io/py/suparkanbun.svg)](https://pypi.org/project/suparkanbun/)
# SuPar-Kanbun
Tokenizer, POS-Tagger and Dependency-Parser for Classical Chinese Texts (漢文/文言文) with [spaCy](https://spacy.io), [Transformers](https://huggingface.co./transformers/) and [SuPar](https://github.com/yzhangcs/parser).
## Basic usage
```py
>>> import suparkanbun
>>> nlp=suparkanbun.load()
>>> doc=nlp("不入虎穴不得虎子")
>>> print(type(doc))
<class 'spacy.tokens.doc.Doc'>
>>> print(suparkanbun.to_conllu(doc))
# text = 不入虎穴不得虎子
1 不 不 ADV v,副詞,否定,無界 Polarity=Neg 2 advmod _ Gloss=not|SpaceAfter=No
2 入 入 VERB v,動詞,行為,移動 _ 0 root _ Gloss=enter|SpaceAfter=No
3 虎 虎 NOUN n,名詞,主体,動物 _ 4 nmod _ Gloss=tiger|SpaceAfter=No
4 穴 穴 NOUN n,名詞,固定物,地形 Case=Loc 2 obj _ Gloss=cave|SpaceAfter=No
5 不 不 ADV v,副詞,否定,無界 Polarity=Neg 6 advmod _ Gloss=not|SpaceAfter=No
6 得 得 VERB v,動詞,行為,得失 _ 2 parataxis _ Gloss=get|SpaceAfter=No
7 虎 虎 NOUN n,名詞,主体,動物 _ 8 nmod _ Gloss=tiger|SpaceAfter=No
8 子 子 NOUN n,名詞,人,関係 _ 6 obj _ Gloss=child|SpaceAfter=No
>>> import deplacy
>>> deplacy.render(doc)
不 ADV <════╗ advmod
入 VERB ═══╗═╝═╗ ROOT
虎 NOUN <╗ ║ ║ nmod
穴 NOUN ═╝<╝ ║ obj
不 ADV <════╗ ║ advmod
得 VERB ═══╗═╝<╝ parataxis
虎 NOUN <╗ ║ nmod
子 NOUN ═╝<╝ obj
```
`suparkanbun.load()` has two options `suparkanbun.load(BERT="roberta-classical-chinese-base-char",Danku=False)`. With the option `Danku=True` the pipeline tries to segment sentences automatically. Available `BERT` options are:
* `BERT="roberta-classical-chinese-base-char"` utilizes [roberta-classical-chinese-base-char](https://huggingface.co./KoichiYasuoka/roberta-classical-chinese-base-char) (default)
* `BERT="roberta-classical-chinese-large-char"` utilizes [roberta-classical-chinese-large-char](https://huggingface.co./KoichiYasuoka/roberta-classical-chinese-large-char)
* `BERT="guwenbert-base"` utilizes [GuwenBERT-base](https://huggingface.co./ethanyt/guwenbert-base)
* `BERT="guwenbert-large"` utilizes [GuwenBERT-large](https://huggingface.co./ethanyt/guwenbert-large)
* `BERT="sikubert"` utilizes [SikuBERT](https://huggingface.co./SIKU-BERT/sikubert)
* `BERT="sikuroberta"` utilizes [SikuRoBERTa](https://huggingface.co./SIKU-BERT/sikuroberta)
## Installation for Linux
```sh
pip3 install suparkanbun --user
```
## Installation for Cygwin64
Make sure to get `python37-devel` `python37-pip` `python37-cython` `python37-numpy` `python37-wheel` `gcc-g++` `mingw64-x86_64-gcc-g++` `git` `curl` `make` `cmake` packages, and then:
```sh
curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh
pip3.7 install suparkanbun --no-build-isolation
```
## Installation for Jupyter Notebook (Google Colaboratory)
```py
!pip install suparkanbun
```
Try [notebook](https://colab.research.google.com/github/KoichiYasuoka/SuPar-Kanbun/blob/main/suparkanbun.ipynb) for Google Colaboratory.
## Author
Koichi Yasuoka (安岡孝一)