Current PyPI packages

SuPar-Kanbun

Tokenizer, POS-Tagger and Dependency-Parser for Classical Chinese Texts (漢文/文言文) with spaCy, Transformers and SuPar.

Basic usage

>>> import suparkanbun
>>> nlp=suparkanbun.load()
>>> doc=nlp("不入虎穴不得虎子")
>>> print(type(doc))
<class 'spacy.tokens.doc.Doc'>
>>> print(suparkanbun.to_conllu(doc))
# text = 不入虎穴不得虎子
1	不	不	ADV	v,副詞,否定,無界	Polarity=Neg	2	advmod	_	Gloss=not|SpaceAfter=No
2	入	入	VERB	v,動詞,行為,移動	_	0	root	_	Gloss=enter|SpaceAfter=No
3	虎	虎	NOUN	n,名詞,主体,動物	_	4	nmod	_	Gloss=tiger|SpaceAfter=No
4	穴	穴	NOUN	n,名詞,固定物,地形	Case=Loc	2	obj	_	Gloss=cave|SpaceAfter=No
5	不	不	ADV	v,副詞,否定,無界	Polarity=Neg	6	advmod	_	Gloss=not|SpaceAfter=No
6	得	得	VERB	v,動詞,行為,得失	_	2	parataxis	_	Gloss=get|SpaceAfter=No
7	虎	虎	NOUN	n,名詞,主体,動物	_	8	nmod	_	Gloss=tiger|SpaceAfter=No
8	子	子	NOUN	n,名詞,人,関係	_	6	obj	_	Gloss=child|SpaceAfter=No

>>> import deplacy
>>> deplacy.render(doc)
不 ADV  <════╗   advmod
入 VERB ═══╗═╝═╗ ROOT
虎 NOUN <╗ ║   ║ nmod
穴 NOUN ═╝<╝   ║ obj
不 ADV  <════╗ ║ advmod
得 VERB ═══╗═╝<╝ parataxis
虎 NOUN <╗ ║     nmod
子 NOUN ═╝<╝     obj

suparkanbun.load() has two options suparkanbun.load(BERT="roberta-classical-chinese-base-char",Danku=False). With the option Danku=True the pipeline tries to segment sentences automatically. Available BERT options are:

Installation for Linux

pip3 install suparkanbun --user

Installation for Cygwin64

Make sure to get python37-devel python37-pip python37-cython python37-numpy python37-wheel gcc-g++ mingw64-x86_64-gcc-g++ git curl make cmake packages, and then:

curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh
pip3.7 install suparkanbun --no-build-isolation

Installation for Jupyter Notebook (Google Colaboratory)

!pip install suparkanbun 

Try notebook for Google Colaboratory.

Author

Koichi Yasuoka (安岡孝一)

Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train KoichiYasuoka/SuPar-Kanbun