metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- consumer-finance-complaints
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: consumer-finance-complaints
type: consumer-finance-complaints
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8219254879975536
- name: F1
type: f1
value: 0.8151998307079064
- name: Recall
type: recall
value: 0.8219254879975536
- name: Precision
type: precision
value: 0.8165753119578384
distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
This model is a fine-tuned version of distilbert-base-uncased on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set:
- Loss: 0.5451
- Accuracy: 0.8219
- F1: 0.8152
- Recall: 0.8219
- Precision: 0.8166
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
1.0678 | 0.2 | 500 | 0.9935 | 0.7193 | 0.6715 | 0.7193 | 0.6348 |
0.8447 | 0.41 | 1000 | 0.8331 | 0.7468 | 0.7108 | 0.7468 | 0.6990 |
0.7913 | 0.61 | 1500 | 0.7022 | 0.7770 | 0.7457 | 0.7770 | 0.7685 |
0.6973 | 0.82 | 2000 | 0.6584 | 0.7922 | 0.7710 | 0.7922 | 0.7849 |
0.5572 | 1.02 | 2500 | 0.6034 | 0.8076 | 0.7986 | 0.8076 | 0.7994 |
0.5528 | 1.22 | 3000 | 0.6017 | 0.8085 | 0.7986 | 0.8085 | 0.8063 |
0.5435 | 1.43 | 3500 | 0.5721 | 0.8147 | 0.8085 | 0.8147 | 0.8107 |
0.4995 | 1.63 | 4000 | 0.5598 | 0.8161 | 0.8125 | 0.8161 | 0.8144 |
0.4854 | 1.83 | 4500 | 0.5451 | 0.8219 | 0.8152 | 0.8219 | 0.8166 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1