--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8219254879975536 - name: F1 type: f1 value: 0.8151998307079064 - name: Recall type: recall value: 0.8219254879975536 - name: Precision type: precision value: 0.8165753119578384 --- # distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5451 - Accuracy: 0.8219 - F1: 0.8152 - Recall: 0.8219 - Precision: 0.8166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 1.0678 | 0.2 | 500 | 0.9935 | 0.7193 | 0.6715 | 0.7193 | 0.6348 | | 0.8447 | 0.41 | 1000 | 0.8331 | 0.7468 | 0.7108 | 0.7468 | 0.6990 | | 0.7913 | 0.61 | 1500 | 0.7022 | 0.7770 | 0.7457 | 0.7770 | 0.7685 | | 0.6973 | 0.82 | 2000 | 0.6584 | 0.7922 | 0.7710 | 0.7922 | 0.7849 | | 0.5572 | 1.02 | 2500 | 0.6034 | 0.8076 | 0.7986 | 0.8076 | 0.7994 | | 0.5528 | 1.22 | 3000 | 0.6017 | 0.8085 | 0.7986 | 0.8085 | 0.8063 | | 0.5435 | 1.43 | 3500 | 0.5721 | 0.8147 | 0.8085 | 0.8147 | 0.8107 | | 0.4995 | 1.63 | 4000 | 0.5598 | 0.8161 | 0.8125 | 0.8161 | 0.8144 | | 0.4854 | 1.83 | 4500 | 0.5451 | 0.8219 | 0.8152 | 0.8219 | 0.8166 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1