Junhoee's picture
Update README.md
5650d47 verified
---
language:
- ko
metrics:
- bleu
pipeline_tag: text2text-generation
---
# ๐ŸŒŠ ์ œ์ฃผ์–ด, ํ‘œ์ค€์–ด ์–‘๋ฐฉํ–ฅ ๋ฒˆ์—ญ ๋ชจ๋ธ (Jeju-Standard Bidirectional Translation Model)
## **1. Introduction**
### ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘**Member**
- **Bitamin 12๊ธฐ : ๊ตฌ์ค€ํšŒ, ์ด์„œํ˜„, ์ด์˜ˆ๋ฆฐ**
- **Bitamin 13๊ธฐ : ๊น€์œค์˜, ๊น€์žฌ๊ฒธ, ์ดํ˜•์„**
### **Github Link**
- https://github.com/junhoeKu/Jeju_Translation.github.io
### **How to use this Model**
- You can use this model with `transformers` to perform inference.
- Below is an example of how to load the model and generate translations:
```python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
## Set up the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Junhoee/Kobart-Jeju-translation")
model = AutoModelForSeq2SeqLM.from_pretrained("Junhoee/Kobart-Jeju-translation").to(device)
## Set up the input text
## ๋ฌธ์žฅ ์ž…๋ ฅ ์ „์— ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ [์ œ์ฃผ] or [ํ‘œ์ค€] ํ† ํฐ์„ ์ž…๋ ฅ ํ›„ ๋ฌธ์žฅ ์ž…๋ ฅ
input_text = "[ํ‘œ์ค€] ์•ˆ๋…•ํ•˜์„ธ์š”"
## Tokenize the input text
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids.to(device)
## Generate the translation
outputs = model.generate(input_ids, max_length=64)
## Decode and print the output
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Model Output:", decoded_output)
```
```java
Model Output: ์•ˆ๋…•ํ•˜์ˆ˜๊ฝˆ
```
---
```python
## Set up the input text
## ๋ฌธ์žฅ ์ž…๋ ฅ ์ „์— ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ [์ œ์ฃผ] or [ํ‘œ์ค€] ํ† ํฐ์„ ์ž…๋ ฅ ํ›„ ๋ฌธ์žฅ ์ž…๋ ฅ
input_text = "[์ œ์ฃผ] ์•ˆ๋…•ํ•˜์ˆ˜๊ฝˆ"
## Tokenize the input text
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids.to(device)
## Generate the translation
outputs = model.generate(input_ids, max_length=64)
## Decode and print the output
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Model Output:", decoded_output)
```
```java
Model Output: ์•ˆ๋…•ํ•˜์„ธ์š”
```
### **Parent Model**
- gogamza/kobart-base-v2
- https://huggingface.co./gogamza/kobart-base-v2
## **2. Dataset - ์•ฝ 93๋งŒ ๊ฐœ์˜ ํ–‰**
- AI-Hub (์ œ์ฃผ์–ด ๋ฐœํ™” ๋ฐ์ดํ„ฐ + ์ค‘๋…„์ธต ๋ฐฉ์–ธ ๋ฐœํ™” ๋ฐ์ดํ„ฐ)
- Github (์นด์นด์˜ค๋ธŒ๋ ˆ์ธ JIT ๋ฐ์ดํ„ฐ)
- ๊ทธ ์™ธ
- ์ œ์ฃผ์–ด์‚ฌ์ „ ๋ฐ์ดํ„ฐ (์ œ์ฃผ๋„์ฒญ ํ™ˆํŽ˜์ด์ง€์—์„œ ํฌ๋กค๋ง)
- ๊ฐ€์‚ฌ ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ (๋ญ๋žญํ•˜๋งจ ์œ ํŠœ๋ธŒ์—์„œ ์ผ์ผ์ด ์ˆ˜์ง‘)
- ๋„์„œ ๋ฐ์ดํ„ฐ (์ œ์ฃผ๋ฐฉ์–ธ ๊ทธ ๋ง›๊ณผ ๋ฉ‹, ๋ถ€์—๋‚˜๋„ ์ง€๊บผ์ ธ๋„ ๋„์„œ์—์„œ ์ผ์ผ์ด ์ˆ˜์ง‘)
- 2018๋…„๋„ ์ œ์ฃผ์–ด ๊ตฌ์ˆ  ์ž๋ฃŒ์ง‘ (์ผ์ผ์ด ์ˆ˜์ง‘ - ํ‰๊ฐ€์šฉ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉ)
## **3. Hyper Parameters**
- Epoch : 3 epochs
- Learning Rate : 2e-5
- Weight Decay=0.01
- Batch Size : 32
## **4. Bleu Score**
- 2018 ์ œ์ฃผ์–ด ๊ตฌ์ˆ  ์ž๋ฃŒ์ง‘ ๋ฐ์ดํ„ฐ ๊ธฐ์ค€
- ์ œ์ฃผ์–ด -> ํ‘œ์ค€์–ด : 0.76
- ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด : 0.5
- AI-Hub ์ œ์ฃผ์–ด ๋ฐœํ™” ๋ฐ์ดํ„ฐ์˜ validation data ๊ธฐ์ค€
- ์ œ์ฃผ์–ด -> ํ‘œ์ค€์–ด : 0.89
- ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด : 0.77
## **5. CREDIT**
- ๊ตฌ์ค€ํšŒ : [email protected]
- ๊น€์œค์˜ : [email protected]
- ๊น€์žฌ๊ฒธ : [email protected]
- ์ด์„œํ˜„ : [email protected]
- ์ด์˜ˆ๋ฆฐ : [email protected]
- ์ดํ˜•์„ : [email protected]