--- language: - ko metrics: - bleu pipeline_tag: text2text-generation --- # ๐ŸŒŠ ์ œ์ฃผ์–ด, ํ‘œ์ค€์–ด ์–‘๋ฐฉํ–ฅ ๋ฒˆ์—ญ ๋ชจ๋ธ (Jeju-Standard Bidirectional Translation Model) ## **1. Introduction** ### ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘**Member** - **Bitamin 12๊ธฐ : ๊ตฌ์ค€ํšŒ, ์ด์„œํ˜„, ์ด์˜ˆ๋ฆฐ** - **Bitamin 13๊ธฐ : ๊น€์œค์˜, ๊น€์žฌ๊ฒธ, ์ดํ˜•์„** ### **Github Link** - https://github.com/junhoeKu/Jeju_Translation.github.io ### **How to use this Model** - You can use this model with `transformers` to perform inference. - Below is an example of how to load the model and generate translations: ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ## Set up the device (GPU or CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ## Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Junhoee/Kobart-Jeju-translation") model = AutoModelForSeq2SeqLM.from_pretrained("Junhoee/Kobart-Jeju-translation").to(device) ## Set up the input text ## ๋ฌธ์žฅ ์ž…๋ ฅ ์ „์— ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ [์ œ์ฃผ] or [ํ‘œ์ค€] ํ† ํฐ์„ ์ž…๋ ฅ ํ›„ ๋ฌธ์žฅ ์ž…๋ ฅ input_text = "[ํ‘œ์ค€] ์•ˆ๋…•ํ•˜์„ธ์š”" ## Tokenize the input text input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids.to(device) ## Generate the translation outputs = model.generate(input_ids, max_length=64) ## Decode and print the output decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) print("Model Output:", decoded_output) ``` ```java Model Output: ์•ˆ๋…•ํ•˜์ˆ˜๊ฝˆ ``` --- ```python ## Set up the input text ## ๋ฌธ์žฅ ์ž…๋ ฅ ์ „์— ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ [์ œ์ฃผ] or [ํ‘œ์ค€] ํ† ํฐ์„ ์ž…๋ ฅ ํ›„ ๋ฌธ์žฅ ์ž…๋ ฅ input_text = "[์ œ์ฃผ] ์•ˆ๋…•ํ•˜์ˆ˜๊ฝˆ" ## Tokenize the input text input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids.to(device) ## Generate the translation outputs = model.generate(input_ids, max_length=64) ## Decode and print the output decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) print("Model Output:", decoded_output) ``` ```java Model Output: ์•ˆ๋…•ํ•˜์„ธ์š” ``` ### **Parent Model** - gogamza/kobart-base-v2 - https://huggingface.co./gogamza/kobart-base-v2 ## **2. Dataset - ์•ฝ 93๋งŒ ๊ฐœ์˜ ํ–‰** - AI-Hub (์ œ์ฃผ์–ด ๋ฐœํ™” ๋ฐ์ดํ„ฐ + ์ค‘๋…„์ธต ๋ฐฉ์–ธ ๋ฐœํ™” ๋ฐ์ดํ„ฐ) - Github (์นด์นด์˜ค๋ธŒ๋ ˆ์ธ JIT ๋ฐ์ดํ„ฐ) - ๊ทธ ์™ธ - ์ œ์ฃผ์–ด์‚ฌ์ „ ๋ฐ์ดํ„ฐ (์ œ์ฃผ๋„์ฒญ ํ™ˆํŽ˜์ด์ง€์—์„œ ํฌ๋กค๋ง) - ๊ฐ€์‚ฌ ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ (๋ญ๋žญํ•˜๋งจ ์œ ํŠœ๋ธŒ์—์„œ ์ผ์ผ์ด ์ˆ˜์ง‘) - ๋„์„œ ๋ฐ์ดํ„ฐ (์ œ์ฃผ๋ฐฉ์–ธ ๊ทธ ๋ง›๊ณผ ๋ฉ‹, ๋ถ€์—๋‚˜๋„ ์ง€๊บผ์ ธ๋„ ๋„์„œ์—์„œ ์ผ์ผ์ด ์ˆ˜์ง‘) - 2018๋…„๋„ ์ œ์ฃผ์–ด ๊ตฌ์ˆ  ์ž๋ฃŒ์ง‘ (์ผ์ผ์ด ์ˆ˜์ง‘ - ํ‰๊ฐ€์šฉ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉ) ## **3. Hyper Parameters** - Epoch : 3 epochs - Learning Rate : 2e-5 - Weight Decay=0.01 - Batch Size : 32 ## **4. Bleu Score** - 2018 ์ œ์ฃผ์–ด ๊ตฌ์ˆ  ์ž๋ฃŒ์ง‘ ๋ฐ์ดํ„ฐ ๊ธฐ์ค€ - ์ œ์ฃผ์–ด -> ํ‘œ์ค€์–ด : 0.76 - ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด : 0.5 - AI-Hub ์ œ์ฃผ์–ด ๋ฐœํ™” ๋ฐ์ดํ„ฐ์˜ validation data ๊ธฐ์ค€ - ์ œ์ฃผ์–ด -> ํ‘œ์ค€์–ด : 0.89 - ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด : 0.77 ## **5. CREDIT** - ๊ตฌ์ค€ํšŒ : kujoon13413@gmail.com - ๊น€์œค์˜ : 202000872@hufs.ac.kr - ๊น€์žฌ๊ฒธ : worua5667@inha.edu - ์ด์„œํ˜„ : rlaorrn0123@sookmyung.ac.kr - ์ด์˜ˆ๋ฆฐ : i75631928@gmail.com - ์ดํ˜•์„ : gudtjr3638@gmail.com