Joy28's picture
Model save
bc27358
|
raw
history blame
2.92 kB
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-subset
    results: []

videomae-base-finetuned-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7174
  • Accuracy: 0.6898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2925

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6183 0.04 118 1.5576 0.4194
1.4874 1.04 236 1.3517 0.4240
1.6523 2.04 354 1.3001 0.3364
1.2763 3.04 472 1.1898 0.3917
1.2819 4.04 590 1.1945 0.5161
1.1196 5.04 708 0.9771 0.5668
1.1976 6.04 826 1.1079 0.4747
0.8174 7.04 944 0.8705 0.6636
0.7923 8.04 1062 0.7827 0.6636
0.6052 9.04 1180 0.9455 0.6313
0.7902 10.04 1298 0.9512 0.6175
0.9501 11.04 1416 0.8058 0.7373
1.1756 12.04 1534 0.7674 0.7327
0.8482 13.04 1652 0.8455 0.6866
0.7657 14.04 1770 0.9124 0.6820
0.9752 15.04 1888 0.9788 0.6313
0.7176 16.04 2006 0.6860 0.7604
0.7682 17.04 2124 0.8052 0.7143
0.8862 18.04 2242 0.9102 0.6820
0.6609 19.04 2360 0.9360 0.6866
0.9678 20.04 2478 0.8441 0.6866
0.8617 21.04 2596 0.8136 0.7097
0.7097 22.04 2714 0.8615 0.7005
0.5089 23.04 2832 0.7796 0.7005
0.715 24.03 2925 0.7685 0.7235

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0