--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-subset results: [] --- # videomae-base-finetuned-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7174 - Accuracy: 0.6898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2925 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6183 | 0.04 | 118 | 1.5576 | 0.4194 | | 1.4874 | 1.04 | 236 | 1.3517 | 0.4240 | | 1.6523 | 2.04 | 354 | 1.3001 | 0.3364 | | 1.2763 | 3.04 | 472 | 1.1898 | 0.3917 | | 1.2819 | 4.04 | 590 | 1.1945 | 0.5161 | | 1.1196 | 5.04 | 708 | 0.9771 | 0.5668 | | 1.1976 | 6.04 | 826 | 1.1079 | 0.4747 | | 0.8174 | 7.04 | 944 | 0.8705 | 0.6636 | | 0.7923 | 8.04 | 1062 | 0.7827 | 0.6636 | | 0.6052 | 9.04 | 1180 | 0.9455 | 0.6313 | | 0.7902 | 10.04 | 1298 | 0.9512 | 0.6175 | | 0.9501 | 11.04 | 1416 | 0.8058 | 0.7373 | | 1.1756 | 12.04 | 1534 | 0.7674 | 0.7327 | | 0.8482 | 13.04 | 1652 | 0.8455 | 0.6866 | | 0.7657 | 14.04 | 1770 | 0.9124 | 0.6820 | | 0.9752 | 15.04 | 1888 | 0.9788 | 0.6313 | | 0.7176 | 16.04 | 2006 | 0.6860 | 0.7604 | | 0.7682 | 17.04 | 2124 | 0.8052 | 0.7143 | | 0.8862 | 18.04 | 2242 | 0.9102 | 0.6820 | | 0.6609 | 19.04 | 2360 | 0.9360 | 0.6866 | | 0.9678 | 20.04 | 2478 | 0.8441 | 0.6866 | | 0.8617 | 21.04 | 2596 | 0.8136 | 0.7097 | | 0.7097 | 22.04 | 2714 | 0.8615 | 0.7005 | | 0.5089 | 23.04 | 2832 | 0.7796 | 0.7005 | | 0.715 | 24.03 | 2925 | 0.7685 | 0.7235 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1 - Datasets 2.16.1 - Tokenizers 0.15.0