metadata
language:
- en
license: apache-2.0
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-large-uncased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: default
metrics:
- name: precision
type: precision
value: 0.9504719600222099
- name: recall
type: recall
value: 0.9574896520863632
- name: f1
type: f1
value: 0.9539679001337494
- name: accuracy
type: accuracy
value: 0.9885618059637473
bert-large-uncased
This model is a fine-tuned version of bert-large-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- precision: 0.9505
- recall: 0.9575
- f1: 0.9540
- accuracy: 0.9886
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- num_train_epochs: 10
- train_batch_size: 4
- learning_rate: 2e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True
Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0