File size: 1,584 Bytes
c001272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language:
- en
license: apache-2.0
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-large-uncased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: default
metrics:
- name: precision
type: precision
value: 0.9504719600222099
- name: recall
type: recall
value: 0.9574896520863632
- name: f1
type: f1
value: 0.9539679001337494
- name: accuracy
type: accuracy
value: 0.9885618059637473
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- precision: 0.9505
- recall: 0.9575
- f1: 0.9540
- accuracy: 0.9886
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- num_train_epochs: 10
- train_batch_size: 4
- learning_rate: 2e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|