File size: 1,584 Bytes
c001272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language:
- en
license: apache-2.0
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-large-uncased
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      args: default
    metrics:
    - name: precision
      type: precision
      value: 0.9504719600222099
    - name: recall
      type: recall
      value: 0.9574896520863632
    - name: f1
      type: f1
      value: 0.9539679001337494
    - name: accuracy
      type: accuracy
      value: 0.9885618059637473
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-uncased

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- precision: 0.9505
- recall: 0.9575
- f1: 0.9540
- accuracy: 0.9886

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- num_train_epochs: 10
- train_batch_size: 4
- learning_rate: 2e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True

### Framework versions

- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0