whisper-tiny-tamil / README.md
JasHugF's picture
End of training
745514b verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: whisper-tiny-tamil
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Speech Commands
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7142857142857143

whisper-tiny-tamil

This model is a fine-tuned version of openai/whisper-tiny on the Speech Commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6296
  • Accuracy: 0.7143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9817 1.0 55 1.0006 0.5714
0.894 2.0 110 0.8903 0.5714
0.7656 3.0 165 0.8475 0.7143
0.5697 4.0 220 0.7843 0.6429
0.8338 5.0 275 0.7055 0.6429
0.6986 6.0 330 0.7369 0.7143
0.5099 7.0 385 0.6787 0.7143
0.5774 8.0 440 0.6369 0.7143
0.7313 9.0 495 0.6106 0.7857
0.5775 10.0 550 0.6296 0.7143

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.2.2
  • Datasets 3.2.0
  • Tokenizers 0.21.0