--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: whisper-tiny-tamil results: - task: name: Audio Classification type: audio-classification dataset: name: Speech Commands type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7142857142857143 --- # whisper-tiny-tamil This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Speech Commands dataset. It achieves the following results on the evaluation set: - Loss: 0.6296 - Accuracy: 0.7143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9817 | 1.0 | 55 | 1.0006 | 0.5714 | | 0.894 | 2.0 | 110 | 0.8903 | 0.5714 | | 0.7656 | 3.0 | 165 | 0.8475 | 0.7143 | | 0.5697 | 4.0 | 220 | 0.7843 | 0.6429 | | 0.8338 | 5.0 | 275 | 0.7055 | 0.6429 | | 0.6986 | 6.0 | 330 | 0.7369 | 0.7143 | | 0.5099 | 7.0 | 385 | 0.6787 | 0.7143 | | 0.5774 | 8.0 | 440 | 0.6369 | 0.7143 | | 0.7313 | 9.0 | 495 | 0.6106 | 0.7857 | | 0.5775 | 10.0 | 550 | 0.6296 | 0.7143 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.2.2 - Datasets 3.2.0 - Tokenizers 0.21.0