|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- image-classification |
|
- seizure-detection |
|
- generated_from_trainer |
|
model-index: |
|
- name: seizure_vit_jlb_231126_ff_raw_combo_multichannel |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# seizure_vit_jlb_231126_ff_raw_combo_multichannel |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the JLB-JLB/seizure_detection_224x224_raw_freq_combo_multichannel dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6323 |
|
- Roc Auc: 0.7311 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Roc Auc | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.3219 | 0.17 | 1000 | 0.6337 | 0.7311 | |
|
| 0.3625 | 0.34 | 2000 | 0.6381 | 0.7038 | |
|
| 0.3435 | 0.51 | 3000 | 0.6890 | 0.7010 | |
|
| 0.2538 | 0.68 | 4000 | 0.7449 | 0.6927 | |
|
| 0.2545 | 0.85 | 5000 | 0.7448 | 0.7049 | |
|
| 0.1387 | 1.02 | 6000 | 1.0363 | 0.7127 | |
|
| 0.1765 | 1.19 | 7000 | 0.8541 | 0.7223 | |
|
| 0.1385 | 1.36 | 8000 | 1.0059 | 0.7228 | |
|
| 0.1602 | 1.53 | 9000 | 0.8951 | 0.7070 | |
|
| 0.1158 | 1.7 | 10000 | 1.0356 | 0.7220 | |
|
| 0.0973 | 1.87 | 11000 | 1.0616 | 0.7132 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.1 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|