JLB-JLB's picture
VIT_SEIZURE_231126
f31b7d2
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - seizure-detection
  - generated_from_trainer
model-index:
  - name: seizure_vit_jlb_231126_ff_raw_combo_multichannel
    results: []

seizure_vit_jlb_231126_ff_raw_combo_multichannel

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the JLB-JLB/seizure_detection_224x224_raw_freq_combo_multichannel dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6323
  • Roc Auc: 0.7311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Roc Auc
0.3219 0.17 1000 0.6337 0.7311
0.3625 0.34 2000 0.6381 0.7038
0.3435 0.51 3000 0.6890 0.7010
0.2538 0.68 4000 0.7449 0.6927
0.2545 0.85 5000 0.7448 0.7049
0.1387 1.02 6000 1.0363 0.7127
0.1765 1.19 7000 0.8541 0.7223
0.1385 1.36 8000 1.0059 0.7228
0.1602 1.53 9000 0.8951 0.7070
0.1158 1.7 10000 1.0356 0.7220
0.0973 1.87 11000 1.0616 0.7132

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0