Inv's picture
Update README.md
6802394 verified
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
- roleplay
- rp
- not-for-all-audiences
base_model:
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
model-index:
- name: Konstanta-Alpha-V2-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.62
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.14
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.11
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 61.08
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.9
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
---
# Konstanta-Alpha-V2-7B
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the DARE TIES to merge Kunoichi with PiVoT Evil and to merge ArchBeagle with Silicon Alice, and then merge the resulting 2 models with the gradient SLERP merge method. ChatML seems to work the best.
### Models Merged
The following models were included in the merge:
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co./SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [maywell/PiVoT-0.1-Evil-a](https://huggingface.co./maywell/PiVoT-0.1-Evil-a)
* [mlabonne/ArchBeagle-7B](https://huggingface.co./mlabonne/ArchBeagle-7B)
* [LakoMoor/Silicon-Alice-7B](https://huggingface.co./LakoMoor/Silicon-Alice-7B)
### Configuration
The following YAML configuration was used to produce this model (to reproduce use mergekit-mega command):
```yaml
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
int8_mask: true
slices:
- sources:
- layer_range: [0, 32]
model: mistralai/Mistral-7B-v0.1
- layer_range: [0, 32]
model: : SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
density: 0.8
weight: 0.5
- layer_range: [0, 32]
model: : maywell/PiVoT-0.1-Evil-a
parameters:
density: 0.3
weight: 0.15
name: first-step
---
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
int8_mask: true
slices:
- sources:
- layer_range: [0, 32]
model: mistralai/Mistral-7B-v0.1
- layer_range: [0, 32]
model: mlabonne/ArchBeagle-7B
parameters:
density: 0.8
weight: 0.75
- layer_range: [0, 32]
model: LakoMoor/Silicon-Alice-7B
parameters:
density: 0.6
weight: 0.30
name: second-step
---
models:
- model: first-step
- model: second-step
merge_method: slerp
base_model: first-step
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
int8_mask: true
normalize: true
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Inv__Konstanta-Alpha-V2-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |72.35|
|AI2 Reasoning Challenge (25-Shot)|69.62|
|HellaSwag (10-Shot) |87.14|
|MMLU (5-Shot) |65.11|
|TruthfulQA (0-shot) |61.08|
|Winogrande (5-shot) |81.22|
|GSM8k (5-shot) |69.90|