File size: 5,819 Bytes
65998d5
2b0c5c3
 
 
65998d5
 
 
 
 
 
 
 
ed9e4bd
9b7ea71
 
236cb48
2b0c5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65998d5
a9627bb
65998d5
 
 
 
 
 
6802394
65998d5
 
 
 
 
 
ed9e4bd
65998d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee5b21
65998d5
 
 
 
2b0c5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
- roleplay
- rp
- not-for-all-audiences
base_model:
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
model-index:
- name: Konstanta-Alpha-V2-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.62
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.14
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.11
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 61.08
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.22
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 69.9
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
      name: Open LLM Leaderboard
---
# Konstanta-Alpha-V2-7B 

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the DARE TIES to merge Kunoichi with PiVoT Evil and to merge ArchBeagle with Silicon Alice, and then merge the resulting 2 models with the gradient SLERP merge method. ChatML seems to work the best.
### Models Merged

The following models were included in the merge:
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co./SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [maywell/PiVoT-0.1-Evil-a](https://huggingface.co./maywell/PiVoT-0.1-Evil-a)
* [mlabonne/ArchBeagle-7B](https://huggingface.co./mlabonne/ArchBeagle-7B)
* [LakoMoor/Silicon-Alice-7B](https://huggingface.co./LakoMoor/Silicon-Alice-7B)

### Configuration

The following YAML configuration was used to produce this model (to reproduce use mergekit-mega command):

```yaml
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
  int8_mask: true
slices:
- sources:
  - layer_range: [0, 32]
    model: mistralai/Mistral-7B-v0.1
  - layer_range: [0, 32]
    model: : SanjiWatsuki/Kunoichi-DPO-v2-7B
    parameters:
      density: 0.8
      weight: 0.5
  - layer_range: [0, 32]
    model: : maywell/PiVoT-0.1-Evil-a
    parameters:
      density: 0.3
      weight: 0.15
name: first-step
---
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
  int8_mask: true
slices:
- sources:
  - layer_range: [0, 32]
    model: mistralai/Mistral-7B-v0.1
  - layer_range: [0, 32]
    model: mlabonne/ArchBeagle-7B
    parameters:
      density: 0.8
      weight: 0.75
  - layer_range: [0, 32]
    model: LakoMoor/Silicon-Alice-7B
    parameters:
      density: 0.6
      weight: 0.30
name: second-step
---
models:
   - model: first-step
   - model: second-step
merge_method: slerp
base_model: first-step
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
  int8_mask: true
  normalize: true
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Inv__Konstanta-Alpha-V2-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.35|
|AI2 Reasoning Challenge (25-Shot)|69.62|
|HellaSwag (10-Shot)              |87.14|
|MMLU (5-Shot)                    |65.11|
|TruthfulQA (0-shot)              |61.08|
|Winogrande (5-shot)              |81.22|
|GSM8k (5-shot)                   |69.90|