|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indic-bert-finetuned-code-mixed-DS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indic-bert-finetuned-code-mixed-DS |
|
|
|
This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co./ai4bharat/indic-bert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8981 |
|
- Accuracy: 0.5594 |
|
- Precision: 0.3838 |
|
- Recall: 0.5263 |
|
- F1: 0.4118 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 43 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.0941 | 2.0 | 497 | 1.0845 | 0.3441 | 0.3615 | 0.4180 | 0.2706 | |
|
| 1.0379 | 3.99 | 994 | 0.9775 | 0.5412 | 0.3779 | 0.5128 | 0.4003 | |
|
| 0.9509 | 5.99 | 1491 | 0.9271 | 0.5513 | 0.3752 | 0.5144 | 0.4043 | |
|
| 0.9152 | 7.98 | 1988 | 0.9047 | 0.5614 | 0.3852 | 0.5275 | 0.4131 | |
|
| 0.8953 | 9.98 | 2485 | 0.8981 | 0.5594 | 0.3838 | 0.5263 | 0.4118 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.10.1+cu111 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|