File size: 1,896 Bytes
805c404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: indic-bert-finetuned-code-mixed-DS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indic-bert-finetuned-code-mixed-DS

This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co./ai4bharat/indic-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8981
- Accuracy: 0.5594
- Precision: 0.3838
- Recall: 0.5263
- F1: 0.4118

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 43
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.0941        | 2.0   | 497  | 1.0845          | 0.3441   | 0.3615    | 0.4180 | 0.2706 |
| 1.0379        | 3.99  | 994  | 0.9775          | 0.5412   | 0.3779    | 0.5128 | 0.4003 |
| 0.9509        | 5.99  | 1491 | 0.9271          | 0.5513   | 0.3752    | 0.5144 | 0.4043 |
| 0.9152        | 7.98  | 1988 | 0.9047          | 0.5614   | 0.3852    | 0.5275 | 0.4131 |
| 0.8953        | 9.98  | 2485 | 0.8981          | 0.5594   | 0.3838    | 0.5263 | 0.4118 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1