|
--- |
|
license: bsd-3-clause |
|
base_model: MIT/ast-finetuned-audioset-10-10-0.4593 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.87 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8005 |
|
- Accuracy: 0.87 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.1235 | 1.0 | 450 | 0.7646 | 0.78 | |
|
| 0.8603 | 2.0 | 900 | 0.8960 | 0.79 | |
|
| 0.0102 | 3.0 | 1350 | 1.0994 | 0.75 | |
|
| 0.9165 | 4.0 | 1800 | 0.7021 | 0.86 | |
|
| 0.0004 | 5.0 | 2250 | 0.7447 | 0.86 | |
|
| 0.0 | 6.0 | 2700 | 0.6903 | 0.87 | |
|
| 1.1203 | 7.0 | 3150 | 0.8936 | 0.86 | |
|
| 0.0 | 8.0 | 3600 | 0.8538 | 0.87 | |
|
| 0.0 | 9.0 | 4050 | 0.8081 | 0.87 | |
|
| 0.0 | 10.0 | 4500 | 0.8005 | 0.87 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|