End of training
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.87
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8005
|
36 |
+
- Accuracy: 0.87
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 2
|
57 |
+
- eval_batch_size: 2
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 10
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.1235 | 1.0 | 450 | 0.7646 | 0.78 |
|
70 |
+
| 0.8603 | 2.0 | 900 | 0.8960 | 0.79 |
|
71 |
+
| 0.0102 | 3.0 | 1350 | 1.0994 | 0.75 |
|
72 |
+
| 0.9165 | 4.0 | 1800 | 0.7021 | 0.86 |
|
73 |
+
| 0.0004 | 5.0 | 2250 | 0.7447 | 0.86 |
|
74 |
+
| 0.0 | 6.0 | 2700 | 0.6903 | 0.87 |
|
75 |
+
| 1.1203 | 7.0 | 3150 | 0.8936 | 0.86 |
|
76 |
+
| 0.0 | 8.0 | 3600 | 0.8538 | 0.87 |
|
77 |
+
| 0.0 | 9.0 | 4050 | 0.8081 | 0.87 |
|
78 |
+
| 0.0 | 10.0 | 4500 | 0.8005 | 0.87 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.35.2
|
84 |
+
- Pytorch 2.1.0+cu118
|
85 |
+
- Datasets 2.15.0
|
86 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 344814656
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0934fd289bbfc4a82682396cbec02cb1545d8c0a035da79f63406164fac522b0
|
3 |
size 344814656
|
runs/Nov23_11-44-54_c076781051d7/events.out.tfevents.1700739898.c076781051d7.7383.4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:355456594f54d3f4765a50cede23a18b911046aa3b785873862023036da00eaf
|
3 |
+
size 149513
|