|
--- |
|
language: |
|
- zh |
|
|
|
license: apache-2.0 |
|
|
|
tags: |
|
- bert |
|
|
|
inference: true |
|
|
|
widget: |
|
- text: "中国首都位于[MASK]。" |
|
--- |
|
# Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) |
|
|
|
The 186 million parameter deberta-V2 base model, using 180G Chinese data, 8 3090TI(24G) training for 21 days,which is a encoder-only transformer structure. Consumed totally 500M samples. |
|
|
|
We pretrained a 128000 vocab from train datasets using sentence piece. And achieve a better in downstream task. |
|
|
|
## Task Description |
|
|
|
Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece is pre-trained by bert like mask task from Deberta [paper](https://readpaper.com/paper/3033187248) |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline |
|
import torch |
|
|
|
tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece', use_fast=False) |
|
model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece') |
|
text = '中国首都位于[MASK]。' |
|
fillmask_pipe = FillMaskPipeline(model, tokenizer) |
|
print(fillmask_pipe(text, top_k=10)) |
|
``` |
|
|
|
## Finetune |
|
|
|
We present the dev results on some tasks. |
|
|
|
| Model | OCNLI | CMNLI | |
|
| ---------------------------------------------------- | ------ | ------ | |
|
| RoBERTa-base | 0.743 | 0.7973 | |
|
| **Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece** | 0.7625 | 0.81 | |
|
|
|
## Citation |
|
|
|
If you find the resource is useful, please cite the following website in your paper. |
|
|
|
``` |
|
@misc{Fengshenbang-LM, |
|
title={Fengshenbang-LM}, |
|
author={IDEA-CCNL}, |
|
year={2022}, |
|
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, |
|
} |
|
``` |
|
|