metadata
language:
- zh
license: apache-2.0
tags:
- bert
inference: true
widget:
- text: 中国首都位于[MASK]。
Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece,one model of Fengshenbang-LM
The 186 million parameter deberta-V2 base model, using 180G Chinese data, 8 3090TI(24G) training for 21 days,which is a encoder-only transformer structure. Consumed totally 500M samples.
We pretrained a 128000 vocab from train datasets using sentence piece. And achieve a better in downstream task.
Task Description
Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece is pre-trained by bert like mask task from Deberta paper
Usage
from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
import torch
tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece', use_fast=False)
model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece')
text = '中国首都位于[MASK]。'
fillmask_pipe = FillMaskPipeline(model, tokenizer)
print(fillmask_pipe(text, top_k=10))
Finetune
We present the dev results on some tasks.
Model | OCNLI | CMNLI |
---|---|---|
RoBERTa-base | 0.743 | 0.7973 |
Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece | 0.7625 | 0.81 |
Citation
If you find the resource is useful, please cite the following website in your paper.
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2022},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}