HorcruxNo13's picture
Model save
4f755ad
|
raw
history blame
4.9 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: swin-tiny-patch4-window7-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8033333333333333
          - name: Precision
            type: precision
            value: 0.7970708748615725
          - name: Recall
            type: recall
            value: 0.8033333333333333

swin-tiny-patch4-window7-224

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4788
  • Accuracy: 0.8033
  • Precision: 0.7971
  • Recall: 0.8033
  • F1 Score: 0.7802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 1.0 4 0.5946 0.7333 0.5378 0.7333 0.6205
No log 2.0 8 0.6006 0.7333 0.5378 0.7333 0.6205
No log 3.0 12 0.5677 0.7333 0.5378 0.7333 0.6205
No log 4.0 16 0.5616 0.7333 0.5378 0.7333 0.6205
No log 5.0 20 0.5556 0.75 0.7193 0.75 0.7023
No log 6.0 24 0.5435 0.7667 0.7819 0.7667 0.7019
No log 7.0 28 0.5318 0.7792 0.7885 0.7792 0.7281
0.5745 8.0 32 0.5316 0.7542 0.7262 0.7542 0.7126
0.5745 9.0 36 0.5232 0.7667 0.7533 0.7667 0.7185
0.5745 10.0 40 0.5226 0.7708 0.7639 0.7708 0.7217
0.5745 11.0 44 0.5217 0.7708 0.7597 0.7708 0.7253
0.5745 12.0 48 0.5224 0.7625 0.7561 0.7625 0.7034
0.5745 13.0 52 0.5213 0.7708 0.7510 0.7708 0.7409
0.5745 14.0 56 0.5207 0.7667 0.7709 0.7667 0.7064
0.4741 15.0 60 0.5247 0.7583 0.7343 0.7583 0.7334
0.4741 16.0 64 0.5352 0.7708 0.7639 0.7708 0.7217
0.4741 17.0 68 0.5227 0.7708 0.7507 0.7708 0.7460
0.4741 18.0 72 0.5206 0.7583 0.7564 0.7583 0.6912
0.4741 19.0 76 0.5088 0.775 0.7627 0.775 0.7353
0.4741 20.0 80 0.5144 0.7667 0.7503 0.7667 0.7221
0.4741 21.0 84 0.5227 0.7875 0.7918 0.7875 0.7453
0.4741 22.0 88 0.5150 0.775 0.7564 0.775 0.7494
0.4233 23.0 92 0.5240 0.7667 0.7533 0.7667 0.7185
0.4233 24.0 96 0.5156 0.7792 0.7684 0.7792 0.7418
0.4233 25.0 100 0.5141 0.7792 0.7631 0.7792 0.7503
0.4233 26.0 104 0.5234 0.7833 0.7813 0.7833 0.7420
0.4233 27.0 108 0.5175 0.7833 0.7813 0.7833 0.7420
0.4233 28.0 112 0.5122 0.7958 0.7856 0.7958 0.7715
0.4233 29.0 116 0.5126 0.7958 0.7856 0.7958 0.7715
0.3931 30.0 120 0.5130 0.7958 0.7856 0.7958 0.7715

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3