HorcruxNo13
commited on
Commit
·
4f755ad
1
Parent(s):
878c09b
Model save
Browse files- README.md +40 -25
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -24,13 +24,13 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Accuracy: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- F1 Score: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -72,32 +72,47 @@ The following hyperparameters were used during training:
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 4 | 0.
|
82 |
-
| No log | 2.0 | 8 | 0.
|
83 |
-
| No log | 3.0 | 12 | 0.
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
### Framework versions
|
99 |
|
100 |
-
- Transformers 4.33.
|
101 |
- Pytorch 2.0.1+cu118
|
102 |
- Datasets 2.14.5
|
103 |
- Tokenizers 0.13.3
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.8033333333333333
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.7970708748615725
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.8033333333333333
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.4788
|
44 |
+
- Accuracy: 0.8033
|
45 |
+
- Precision: 0.7971
|
46 |
+
- Recall: 0.8033
|
47 |
+
- F1 Score: 0.7802
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
+
- num_epochs: 30
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 4 | 0.5946 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
82 |
+
| No log | 2.0 | 8 | 0.6006 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
83 |
+
| No log | 3.0 | 12 | 0.5677 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
84 |
+
| No log | 4.0 | 16 | 0.5616 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
85 |
+
| No log | 5.0 | 20 | 0.5556 | 0.75 | 0.7193 | 0.75 | 0.7023 |
|
86 |
+
| No log | 6.0 | 24 | 0.5435 | 0.7667 | 0.7819 | 0.7667 | 0.7019 |
|
87 |
+
| No log | 7.0 | 28 | 0.5318 | 0.7792 | 0.7885 | 0.7792 | 0.7281 |
|
88 |
+
| 0.5745 | 8.0 | 32 | 0.5316 | 0.7542 | 0.7262 | 0.7542 | 0.7126 |
|
89 |
+
| 0.5745 | 9.0 | 36 | 0.5232 | 0.7667 | 0.7533 | 0.7667 | 0.7185 |
|
90 |
+
| 0.5745 | 10.0 | 40 | 0.5226 | 0.7708 | 0.7639 | 0.7708 | 0.7217 |
|
91 |
+
| 0.5745 | 11.0 | 44 | 0.5217 | 0.7708 | 0.7597 | 0.7708 | 0.7253 |
|
92 |
+
| 0.5745 | 12.0 | 48 | 0.5224 | 0.7625 | 0.7561 | 0.7625 | 0.7034 |
|
93 |
+
| 0.5745 | 13.0 | 52 | 0.5213 | 0.7708 | 0.7510 | 0.7708 | 0.7409 |
|
94 |
+
| 0.5745 | 14.0 | 56 | 0.5207 | 0.7667 | 0.7709 | 0.7667 | 0.7064 |
|
95 |
+
| 0.4741 | 15.0 | 60 | 0.5247 | 0.7583 | 0.7343 | 0.7583 | 0.7334 |
|
96 |
+
| 0.4741 | 16.0 | 64 | 0.5352 | 0.7708 | 0.7639 | 0.7708 | 0.7217 |
|
97 |
+
| 0.4741 | 17.0 | 68 | 0.5227 | 0.7708 | 0.7507 | 0.7708 | 0.7460 |
|
98 |
+
| 0.4741 | 18.0 | 72 | 0.5206 | 0.7583 | 0.7564 | 0.7583 | 0.6912 |
|
99 |
+
| 0.4741 | 19.0 | 76 | 0.5088 | 0.775 | 0.7627 | 0.775 | 0.7353 |
|
100 |
+
| 0.4741 | 20.0 | 80 | 0.5144 | 0.7667 | 0.7503 | 0.7667 | 0.7221 |
|
101 |
+
| 0.4741 | 21.0 | 84 | 0.5227 | 0.7875 | 0.7918 | 0.7875 | 0.7453 |
|
102 |
+
| 0.4741 | 22.0 | 88 | 0.5150 | 0.775 | 0.7564 | 0.775 | 0.7494 |
|
103 |
+
| 0.4233 | 23.0 | 92 | 0.5240 | 0.7667 | 0.7533 | 0.7667 | 0.7185 |
|
104 |
+
| 0.4233 | 24.0 | 96 | 0.5156 | 0.7792 | 0.7684 | 0.7792 | 0.7418 |
|
105 |
+
| 0.4233 | 25.0 | 100 | 0.5141 | 0.7792 | 0.7631 | 0.7792 | 0.7503 |
|
106 |
+
| 0.4233 | 26.0 | 104 | 0.5234 | 0.7833 | 0.7813 | 0.7833 | 0.7420 |
|
107 |
+
| 0.4233 | 27.0 | 108 | 0.5175 | 0.7833 | 0.7813 | 0.7833 | 0.7420 |
|
108 |
+
| 0.4233 | 28.0 | 112 | 0.5122 | 0.7958 | 0.7856 | 0.7958 | 0.7715 |
|
109 |
+
| 0.4233 | 29.0 | 116 | 0.5126 | 0.7958 | 0.7856 | 0.7958 | 0.7715 |
|
110 |
+
| 0.3931 | 30.0 | 120 | 0.5130 | 0.7958 | 0.7856 | 0.7958 | 0.7715 |
|
111 |
|
112 |
|
113 |
### Framework versions
|
114 |
|
115 |
+
- Transformers 4.33.3
|
116 |
- Pytorch 2.0.1+cu118
|
117 |
- Datasets 2.14.5
|
118 |
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110394865
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50603fecffc3fafc17fc8b03379e71690aea9805f7c7982e02f7041e30a700f6
|
3 |
size 110394865
|