|
--- |
|
base_model: MBZUAI/swiftformer-xs |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: swiftformer-xs |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.73 |
|
- name: Precision |
|
type: precision |
|
value: 0.5329 |
|
- name: Recall |
|
type: recall |
|
value: 0.73 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swiftformer-xs |
|
|
|
This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co./MBZUAI/swiftformer-xs) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5838 |
|
- Accuracy: 0.73 |
|
- Precision: 0.5329 |
|
- Recall: 0.73 |
|
- F1 Score: 0.6161 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| |
|
| No log | 1.0 | 4 | 0.6209 | 0.7292 | 0.6273 | 0.7292 | 0.6259 | |
|
| No log | 2.0 | 8 | 0.7514 | 0.3875 | 0.5947 | 0.3875 | 0.3910 | |
|
| No log | 3.0 | 12 | 0.7574 | 0.3292 | 0.6284 | 0.3292 | 0.2679 | |
|
| 0.6558 | 4.0 | 16 | 0.7080 | 0.5042 | 0.6591 | 0.5042 | 0.5279 | |
|
| 0.6558 | 5.0 | 20 | 0.6566 | 0.6458 | 0.6859 | 0.6458 | 0.6604 | |
|
| 0.6558 | 6.0 | 24 | 0.6509 | 0.65 | 0.6810 | 0.65 | 0.6621 | |
|
| 0.6558 | 7.0 | 28 | 0.6438 | 0.6375 | 0.6639 | 0.6375 | 0.6484 | |
|
| 0.5697 | 8.0 | 32 | 0.6455 | 0.65 | 0.6845 | 0.65 | 0.6631 | |
|
| 0.5697 | 9.0 | 36 | 0.6480 | 0.6458 | 0.6823 | 0.6458 | 0.6596 | |
|
| 0.5697 | 10.0 | 40 | 0.6438 | 0.6542 | 0.6867 | 0.6542 | 0.6667 | |
|
| 0.5697 | 11.0 | 44 | 0.6366 | 0.6583 | 0.6924 | 0.6583 | 0.6711 | |
|
| 0.5232 | 12.0 | 48 | 0.6391 | 0.6625 | 0.7016 | 0.6625 | 0.6764 | |
|
| 0.5232 | 13.0 | 52 | 0.6386 | 0.6583 | 0.6924 | 0.6583 | 0.6711 | |
|
| 0.5232 | 14.0 | 56 | 0.6403 | 0.6667 | 0.7038 | 0.6667 | 0.68 | |
|
| 0.5068 | 15.0 | 60 | 0.6459 | 0.6708 | 0.7131 | 0.6708 | 0.6851 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|