--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: swiftformer-xs results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.73 - name: Precision type: precision value: 0.5329 - name: Recall type: recall value: 0.73 --- # swiftformer-xs This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co./MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5838 - Accuracy: 0.73 - Precision: 0.5329 - Recall: 0.73 - F1 Score: 0.6161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.6209 | 0.7292 | 0.6273 | 0.7292 | 0.6259 | | No log | 2.0 | 8 | 0.7514 | 0.3875 | 0.5947 | 0.3875 | 0.3910 | | No log | 3.0 | 12 | 0.7574 | 0.3292 | 0.6284 | 0.3292 | 0.2679 | | 0.6558 | 4.0 | 16 | 0.7080 | 0.5042 | 0.6591 | 0.5042 | 0.5279 | | 0.6558 | 5.0 | 20 | 0.6566 | 0.6458 | 0.6859 | 0.6458 | 0.6604 | | 0.6558 | 6.0 | 24 | 0.6509 | 0.65 | 0.6810 | 0.65 | 0.6621 | | 0.6558 | 7.0 | 28 | 0.6438 | 0.6375 | 0.6639 | 0.6375 | 0.6484 | | 0.5697 | 8.0 | 32 | 0.6455 | 0.65 | 0.6845 | 0.65 | 0.6631 | | 0.5697 | 9.0 | 36 | 0.6480 | 0.6458 | 0.6823 | 0.6458 | 0.6596 | | 0.5697 | 10.0 | 40 | 0.6438 | 0.6542 | 0.6867 | 0.6542 | 0.6667 | | 0.5697 | 11.0 | 44 | 0.6366 | 0.6583 | 0.6924 | 0.6583 | 0.6711 | | 0.5232 | 12.0 | 48 | 0.6391 | 0.6625 | 0.7016 | 0.6625 | 0.6764 | | 0.5232 | 13.0 | 52 | 0.6386 | 0.6583 | 0.6924 | 0.6583 | 0.6711 | | 0.5232 | 14.0 | 56 | 0.6403 | 0.6667 | 0.7038 | 0.6667 | 0.68 | | 0.5068 | 15.0 | 60 | 0.6459 | 0.6708 | 0.7131 | 0.6708 | 0.6851 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3