HorcruxNo13's picture
update model card README.md
ea0c6f8
|
raw
history blame
4.08 kB
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on the HorcruxNo13/new_wear dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0737
  • Mean Iou: 0.3080
  • Mean Accuracy: 0.6160
  • Overall Accuracy: 0.6160
  • Accuracy Unlabeled: nan
  • Accuracy Wear: 0.6160
  • Iou Unlabeled: 0.0
  • Iou Wear: 0.6160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Wear Iou Unlabeled Iou Wear
0.4694 3.33 20 0.4857 0.3178 0.6356 0.6356 nan 0.6356 0.0 0.6356
0.3038 6.67 40 0.2805 0.3408 0.6816 0.6816 nan 0.6816 0.0 0.6816
0.2303 10.0 60 0.2080 0.3408 0.6816 0.6816 nan 0.6816 0.0 0.6816
0.1935 13.33 80 0.1870 0.3420 0.6841 0.6841 nan 0.6841 0.0 0.6841
0.1697 16.67 100 0.1507 0.3405 0.6810 0.6810 nan 0.6810 0.0 0.6810
0.1406 20.0 120 0.1377 0.3437 0.6874 0.6874 nan 0.6874 0.0 0.6874
0.1363 23.33 140 0.1156 0.3301 0.6601 0.6601 nan 0.6601 0.0 0.6601
0.117 26.67 160 0.1019 0.3376 0.6753 0.6753 nan 0.6753 0.0 0.6753
0.0972 30.0 180 0.0935 0.3264 0.6529 0.6529 nan 0.6529 0.0 0.6529
0.1076 33.33 200 0.0901 0.3292 0.6584 0.6584 nan 0.6584 0.0 0.6584
0.0868 36.67 220 0.0806 0.3218 0.6436 0.6436 nan 0.6436 0.0 0.6436
0.0866 40.0 240 0.0766 0.3183 0.6367 0.6367 nan 0.6367 0.0 0.6367
0.0757 43.33 260 0.0750 0.3082 0.6165 0.6165 nan 0.6165 0.0 0.6165
0.077 46.67 280 0.0750 0.3104 0.6207 0.6207 nan 0.6207 0.0 0.6207
0.0765 50.0 300 0.0737 0.3080 0.6160 0.6160 nan 0.6160 0.0 0.6160

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.13.3