File size: 4,076 Bytes
b3fd691 ea0c6f8 b3fd691 ea0c6f8 b3fd691 ea0c6f8 b3fd691 ea0c6f8 b3fd691 ea0c6f8 b3fd691 bc85fee b3fd691 ea0c6f8 50c128c ea0c6f8 b3fd691 ea0c6f8 b3fd691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-toolwear
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the HorcruxNo13/new_wear dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0737
- Mean Iou: 0.3080
- Mean Accuracy: 0.6160
- Overall Accuracy: 0.6160
- Accuracy Unlabeled: nan
- Accuracy Wear: 0.6160
- Iou Unlabeled: 0.0
- Iou Wear: 0.6160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Iou Unlabeled | Iou Wear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
| 0.4694 | 3.33 | 20 | 0.4857 | 0.3178 | 0.6356 | 0.6356 | nan | 0.6356 | 0.0 | 0.6356 |
| 0.3038 | 6.67 | 40 | 0.2805 | 0.3408 | 0.6816 | 0.6816 | nan | 0.6816 | 0.0 | 0.6816 |
| 0.2303 | 10.0 | 60 | 0.2080 | 0.3408 | 0.6816 | 0.6816 | nan | 0.6816 | 0.0 | 0.6816 |
| 0.1935 | 13.33 | 80 | 0.1870 | 0.3420 | 0.6841 | 0.6841 | nan | 0.6841 | 0.0 | 0.6841 |
| 0.1697 | 16.67 | 100 | 0.1507 | 0.3405 | 0.6810 | 0.6810 | nan | 0.6810 | 0.0 | 0.6810 |
| 0.1406 | 20.0 | 120 | 0.1377 | 0.3437 | 0.6874 | 0.6874 | nan | 0.6874 | 0.0 | 0.6874 |
| 0.1363 | 23.33 | 140 | 0.1156 | 0.3301 | 0.6601 | 0.6601 | nan | 0.6601 | 0.0 | 0.6601 |
| 0.117 | 26.67 | 160 | 0.1019 | 0.3376 | 0.6753 | 0.6753 | nan | 0.6753 | 0.0 | 0.6753 |
| 0.0972 | 30.0 | 180 | 0.0935 | 0.3264 | 0.6529 | 0.6529 | nan | 0.6529 | 0.0 | 0.6529 |
| 0.1076 | 33.33 | 200 | 0.0901 | 0.3292 | 0.6584 | 0.6584 | nan | 0.6584 | 0.0 | 0.6584 |
| 0.0868 | 36.67 | 220 | 0.0806 | 0.3218 | 0.6436 | 0.6436 | nan | 0.6436 | 0.0 | 0.6436 |
| 0.0866 | 40.0 | 240 | 0.0766 | 0.3183 | 0.6367 | 0.6367 | nan | 0.6367 | 0.0 | 0.6367 |
| 0.0757 | 43.33 | 260 | 0.0750 | 0.3082 | 0.6165 | 0.6165 | nan | 0.6165 | 0.0 | 0.6165 |
| 0.077 | 46.67 | 280 | 0.0750 | 0.3104 | 0.6207 | 0.6207 | nan | 0.6207 | 0.0 | 0.6207 |
| 0.0765 | 50.0 | 300 | 0.0737 | 0.3080 | 0.6160 | 0.6160 | nan | 0.6160 | 0.0 | 0.6160 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.13.3
|