HorcruxNo13's picture
update model card README.md
e4d595c
|
raw
history blame
8.64 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0799
  • Mean Iou: 0.4629
  • Mean Accuracy: 0.9258
  • Overall Accuracy: 0.9258
  • Accuracy Unlabeled: nan
  • Accuracy Liver: 0.9258
  • Iou Unlabeled: 0.0
  • Iou Liver: 0.9258

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Liver Iou Unlabeled Iou Liver
0.2837 0.8 20 0.3699 0.3876 0.7752 0.7752 nan 0.7752 0.0 0.7752
0.2264 1.6 40 0.1982 0.4222 0.8444 0.8444 nan 0.8444 0.0 0.8444
0.1687 2.4 60 0.1594 0.3988 0.7977 0.7977 nan 0.7977 0.0 0.7977
0.1489 3.2 80 0.1396 0.4050 0.8100 0.8100 nan 0.8100 0.0 0.8100
0.1111 4.0 100 0.1203 0.4223 0.8446 0.8446 nan 0.8446 0.0 0.8446
0.1115 4.8 120 0.1160 0.4512 0.9023 0.9023 nan 0.9023 0.0 0.9023
0.1081 5.6 140 0.1053 0.4504 0.9009 0.9009 nan 0.9009 0.0 0.9009
0.1111 6.4 160 0.0960 0.4526 0.9051 0.9051 nan 0.9051 0.0 0.9051
0.0904 7.2 180 0.0954 0.4646 0.9292 0.9292 nan 0.9292 0.0 0.9292
0.0868 8.0 200 0.0925 0.4593 0.9187 0.9187 nan 0.9187 0.0 0.9187
0.092 8.8 220 0.0852 0.4630 0.9261 0.9261 nan 0.9261 0.0 0.9261
0.0686 9.6 240 0.0897 0.4631 0.9263 0.9263 nan 0.9263 0.0 0.9263
0.0684 10.4 260 0.0939 0.4727 0.9455 0.9455 nan 0.9455 0.0 0.9455
0.0634 11.2 280 0.0919 0.4241 0.8483 0.8483 nan 0.8483 0.0 0.8483
0.059 12.0 300 0.0886 0.4727 0.9455 0.9455 nan 0.9455 0.0 0.9455
0.052 12.8 320 0.0764 0.4554 0.9108 0.9108 nan 0.9108 0.0 0.9108
0.0558 13.6 340 0.0769 0.4629 0.9258 0.9258 nan 0.9258 0.0 0.9258
0.0594 14.4 360 0.0770 0.4616 0.9231 0.9231 nan 0.9231 0.0 0.9231
0.0641 15.2 380 0.0844 0.4709 0.9417 0.9417 nan 0.9417 0.0 0.9417
0.0645 16.0 400 0.0790 0.4632 0.9263 0.9263 nan 0.9263 0.0 0.9263
0.0545 16.8 420 0.0776 0.4610 0.9220 0.9220 nan 0.9220 0.0 0.9220
0.056 17.6 440 0.0780 0.4541 0.9082 0.9082 nan 0.9082 0.0 0.9082
0.0472 18.4 460 0.0742 0.4595 0.9189 0.9189 nan 0.9189 0.0 0.9189
0.0478 19.2 480 0.0806 0.4690 0.9380 0.9380 nan 0.9380 0.0 0.9380
0.0523 20.0 500 0.0741 0.4550 0.9100 0.9100 nan 0.9100 0.0 0.9100
0.0401 20.8 520 0.0794 0.4637 0.9274 0.9274 nan 0.9274 0.0 0.9274
0.041 21.6 540 0.0772 0.4631 0.9262 0.9262 nan 0.9262 0.0 0.9262
0.0386 22.4 560 0.0795 0.4620 0.9240 0.9240 nan 0.9240 0.0 0.9240
0.0386 23.2 580 0.0761 0.4616 0.9232 0.9232 nan 0.9232 0.0 0.9232
0.0628 24.0 600 0.0778 0.4636 0.9271 0.9271 nan 0.9271 0.0 0.9271
0.0387 24.8 620 0.0782 0.4613 0.9226 0.9226 nan 0.9226 0.0 0.9226
0.0422 25.6 640 0.0778 0.4616 0.9233 0.9233 nan 0.9233 0.0 0.9233
0.0392 26.4 660 0.0838 0.4696 0.9393 0.9393 nan 0.9393 0.0 0.9393
0.04 27.2 680 0.0809 0.4658 0.9315 0.9315 nan 0.9315 0.0 0.9315
0.0341 28.0 700 0.0822 0.4667 0.9335 0.9335 nan 0.9335 0.0 0.9335
0.0329 28.8 720 0.0797 0.4639 0.9278 0.9278 nan 0.9278 0.0 0.9278
0.0373 29.6 740 0.0769 0.4582 0.9163 0.9163 nan 0.9163 0.0 0.9163
0.0366 30.4 760 0.0804 0.4632 0.9264 0.9264 nan 0.9264 0.0 0.9264
0.0432 31.2 780 0.0793 0.4587 0.9174 0.9174 nan 0.9174 0.0 0.9174
0.0328 32.0 800 0.0838 0.4688 0.9377 0.9377 nan 0.9377 0.0 0.9377
0.0377 32.8 820 0.0805 0.4643 0.9286 0.9286 nan 0.9286 0.0 0.9286
0.0327 33.6 840 0.0784 0.4614 0.9228 0.9228 nan 0.9228 0.0 0.9228
0.032 34.4 860 0.0799 0.4629 0.9258 0.9258 nan 0.9258 0.0 0.9258

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3