File size: 8,635 Bytes
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c4e6e
b3fd691
e4d595c
 
 
 
b3fd691
e4d595c
b3fd691
e4d595c
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd5730
 
 
b3fd691
 
 
e4d595c
b3fd691
 
 
e4d595c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
0bd5730
 
b3fd691
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0799
- Mean Iou: 0.4629
- Mean Accuracy: 0.9258
- Overall Accuracy: 0.9258
- Accuracy Unlabeled: nan
- Accuracy Liver: 0.9258
- Iou Unlabeled: 0.0
- Iou Liver: 0.9258

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 35

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Liver | Iou Unlabeled | Iou Liver |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
| 0.2837        | 0.8   | 20   | 0.3699          | 0.3876   | 0.7752        | 0.7752           | nan                | 0.7752         | 0.0           | 0.7752    |
| 0.2264        | 1.6   | 40   | 0.1982          | 0.4222   | 0.8444        | 0.8444           | nan                | 0.8444         | 0.0           | 0.8444    |
| 0.1687        | 2.4   | 60   | 0.1594          | 0.3988   | 0.7977        | 0.7977           | nan                | 0.7977         | 0.0           | 0.7977    |
| 0.1489        | 3.2   | 80   | 0.1396          | 0.4050   | 0.8100        | 0.8100           | nan                | 0.8100         | 0.0           | 0.8100    |
| 0.1111        | 4.0   | 100  | 0.1203          | 0.4223   | 0.8446        | 0.8446           | nan                | 0.8446         | 0.0           | 0.8446    |
| 0.1115        | 4.8   | 120  | 0.1160          | 0.4512   | 0.9023        | 0.9023           | nan                | 0.9023         | 0.0           | 0.9023    |
| 0.1081        | 5.6   | 140  | 0.1053          | 0.4504   | 0.9009        | 0.9009           | nan                | 0.9009         | 0.0           | 0.9009    |
| 0.1111        | 6.4   | 160  | 0.0960          | 0.4526   | 0.9051        | 0.9051           | nan                | 0.9051         | 0.0           | 0.9051    |
| 0.0904        | 7.2   | 180  | 0.0954          | 0.4646   | 0.9292        | 0.9292           | nan                | 0.9292         | 0.0           | 0.9292    |
| 0.0868        | 8.0   | 200  | 0.0925          | 0.4593   | 0.9187        | 0.9187           | nan                | 0.9187         | 0.0           | 0.9187    |
| 0.092         | 8.8   | 220  | 0.0852          | 0.4630   | 0.9261        | 0.9261           | nan                | 0.9261         | 0.0           | 0.9261    |
| 0.0686        | 9.6   | 240  | 0.0897          | 0.4631   | 0.9263        | 0.9263           | nan                | 0.9263         | 0.0           | 0.9263    |
| 0.0684        | 10.4  | 260  | 0.0939          | 0.4727   | 0.9455        | 0.9455           | nan                | 0.9455         | 0.0           | 0.9455    |
| 0.0634        | 11.2  | 280  | 0.0919          | 0.4241   | 0.8483        | 0.8483           | nan                | 0.8483         | 0.0           | 0.8483    |
| 0.059         | 12.0  | 300  | 0.0886          | 0.4727   | 0.9455        | 0.9455           | nan                | 0.9455         | 0.0           | 0.9455    |
| 0.052         | 12.8  | 320  | 0.0764          | 0.4554   | 0.9108        | 0.9108           | nan                | 0.9108         | 0.0           | 0.9108    |
| 0.0558        | 13.6  | 340  | 0.0769          | 0.4629   | 0.9258        | 0.9258           | nan                | 0.9258         | 0.0           | 0.9258    |
| 0.0594        | 14.4  | 360  | 0.0770          | 0.4616   | 0.9231        | 0.9231           | nan                | 0.9231         | 0.0           | 0.9231    |
| 0.0641        | 15.2  | 380  | 0.0844          | 0.4709   | 0.9417        | 0.9417           | nan                | 0.9417         | 0.0           | 0.9417    |
| 0.0645        | 16.0  | 400  | 0.0790          | 0.4632   | 0.9263        | 0.9263           | nan                | 0.9263         | 0.0           | 0.9263    |
| 0.0545        | 16.8  | 420  | 0.0776          | 0.4610   | 0.9220        | 0.9220           | nan                | 0.9220         | 0.0           | 0.9220    |
| 0.056         | 17.6  | 440  | 0.0780          | 0.4541   | 0.9082        | 0.9082           | nan                | 0.9082         | 0.0           | 0.9082    |
| 0.0472        | 18.4  | 460  | 0.0742          | 0.4595   | 0.9189        | 0.9189           | nan                | 0.9189         | 0.0           | 0.9189    |
| 0.0478        | 19.2  | 480  | 0.0806          | 0.4690   | 0.9380        | 0.9380           | nan                | 0.9380         | 0.0           | 0.9380    |
| 0.0523        | 20.0  | 500  | 0.0741          | 0.4550   | 0.9100        | 0.9100           | nan                | 0.9100         | 0.0           | 0.9100    |
| 0.0401        | 20.8  | 520  | 0.0794          | 0.4637   | 0.9274        | 0.9274           | nan                | 0.9274         | 0.0           | 0.9274    |
| 0.041         | 21.6  | 540  | 0.0772          | 0.4631   | 0.9262        | 0.9262           | nan                | 0.9262         | 0.0           | 0.9262    |
| 0.0386        | 22.4  | 560  | 0.0795          | 0.4620   | 0.9240        | 0.9240           | nan                | 0.9240         | 0.0           | 0.9240    |
| 0.0386        | 23.2  | 580  | 0.0761          | 0.4616   | 0.9232        | 0.9232           | nan                | 0.9232         | 0.0           | 0.9232    |
| 0.0628        | 24.0  | 600  | 0.0778          | 0.4636   | 0.9271        | 0.9271           | nan                | 0.9271         | 0.0           | 0.9271    |
| 0.0387        | 24.8  | 620  | 0.0782          | 0.4613   | 0.9226        | 0.9226           | nan                | 0.9226         | 0.0           | 0.9226    |
| 0.0422        | 25.6  | 640  | 0.0778          | 0.4616   | 0.9233        | 0.9233           | nan                | 0.9233         | 0.0           | 0.9233    |
| 0.0392        | 26.4  | 660  | 0.0838          | 0.4696   | 0.9393        | 0.9393           | nan                | 0.9393         | 0.0           | 0.9393    |
| 0.04          | 27.2  | 680  | 0.0809          | 0.4658   | 0.9315        | 0.9315           | nan                | 0.9315         | 0.0           | 0.9315    |
| 0.0341        | 28.0  | 700  | 0.0822          | 0.4667   | 0.9335        | 0.9335           | nan                | 0.9335         | 0.0           | 0.9335    |
| 0.0329        | 28.8  | 720  | 0.0797          | 0.4639   | 0.9278        | 0.9278           | nan                | 0.9278         | 0.0           | 0.9278    |
| 0.0373        | 29.6  | 740  | 0.0769          | 0.4582   | 0.9163        | 0.9163           | nan                | 0.9163         | 0.0           | 0.9163    |
| 0.0366        | 30.4  | 760  | 0.0804          | 0.4632   | 0.9264        | 0.9264           | nan                | 0.9264         | 0.0           | 0.9264    |
| 0.0432        | 31.2  | 780  | 0.0793          | 0.4587   | 0.9174        | 0.9174           | nan                | 0.9174         | 0.0           | 0.9174    |
| 0.0328        | 32.0  | 800  | 0.0838          | 0.4688   | 0.9377        | 0.9377           | nan                | 0.9377         | 0.0           | 0.9377    |
| 0.0377        | 32.8  | 820  | 0.0805          | 0.4643   | 0.9286        | 0.9286           | nan                | 0.9286         | 0.0           | 0.9286    |
| 0.0327        | 33.6  | 840  | 0.0784          | 0.4614   | 0.9228        | 0.9228           | nan                | 0.9228         | 0.0           | 0.9228    |
| 0.032         | 34.4  | 860  | 0.0799          | 0.4629   | 0.9258        | 0.9258           | nan                | 0.9258         | 0.0           | 0.9258    |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3