HorcruxNo13's picture
update model card README.md
d91db74
|
raw
history blame
8.44 kB
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on the HorcruxNo13/toolwear_complete_tool dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0236
  • Mean Iou: 0.4952
  • Mean Accuracy: 0.9903
  • Overall Accuracy: 0.9903
  • Accuracy Unlabeled: nan
  • Accuracy Tool: 0.9903
  • Iou Unlabeled: 0.0
  • Iou Tool: 0.9903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Iou Unlabeled Iou Tool
0.1696 1.18 20 0.3490 0.4962 0.9924 0.9924 nan 0.9924 0.0 0.9924
0.1045 2.35 40 0.0977 0.4878 0.9755 0.9755 nan 0.9755 0.0 0.9755
0.0871 3.53 60 0.0650 0.4953 0.9905 0.9905 nan 0.9905 0.0 0.9905
0.0542 4.71 80 0.0652 0.4956 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0507 5.88 100 0.0573 0.4952 0.9905 0.9905 nan 0.9905 0.0 0.9905
0.0702 7.06 120 0.0510 0.4942 0.9883 0.9883 nan 0.9883 0.0 0.9883
0.0455 8.24 140 0.0487 0.4892 0.9784 0.9784 nan 0.9784 0.0 0.9784
0.049 9.41 160 0.0430 0.4934 0.9867 0.9867 nan 0.9867 0.0 0.9867
0.048 10.59 180 0.0409 0.4940 0.9881 0.9881 nan 0.9881 0.0 0.9881
0.0476 11.76 200 0.0347 0.4965 0.9931 0.9931 nan 0.9931 0.0 0.9931
0.048 12.94 220 0.0366 0.4972 0.9944 0.9944 nan 0.9944 0.0 0.9944
0.0242 14.12 240 0.0341 0.4963 0.9926 0.9926 nan 0.9926 0.0 0.9926
0.0274 15.29 260 0.0305 0.4966 0.9933 0.9933 nan 0.9933 0.0 0.9933
0.0192 16.47 280 0.0318 0.4956 0.9913 0.9913 nan 0.9913 0.0 0.9913
0.0388 17.65 300 0.0280 0.4966 0.9932 0.9932 nan 0.9932 0.0 0.9932
0.0245 18.82 320 0.0280 0.4947 0.9894 0.9894 nan 0.9894 0.0 0.9894
0.0268 20.0 340 0.0268 0.4949 0.9899 0.9899 nan 0.9899 0.0 0.9899
0.0173 21.18 360 0.0278 0.4955 0.9910 0.9910 nan 0.9910 0.0 0.9910
0.0275 22.35 380 0.0270 0.4957 0.9914 0.9914 nan 0.9914 0.0 0.9914
0.0269 23.53 400 0.0271 0.4950 0.9899 0.9899 nan 0.9899 0.0 0.9899
0.0371 24.71 420 0.0252 0.4938 0.9876 0.9876 nan 0.9876 0.0 0.9876
0.0233 25.88 440 0.0264 0.4933 0.9867 0.9867 nan 0.9867 0.0 0.9867
0.0181 27.06 460 0.0257 0.4959 0.9918 0.9918 nan 0.9918 0.0 0.9918
0.0243 28.24 480 0.0255 0.4952 0.9904 0.9904 nan 0.9904 0.0 0.9904
0.0144 29.41 500 0.0244 0.4956 0.9912 0.9912 nan 0.9912 0.0 0.9912
0.0158 30.59 520 0.0251 0.4947 0.9894 0.9894 nan 0.9894 0.0 0.9894
0.017 31.76 540 0.0247 0.4955 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0179 32.94 560 0.0237 0.4965 0.9930 0.9930 nan 0.9930 0.0 0.9930
0.0162 34.12 580 0.0238 0.4956 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0191 35.29 600 0.0241 0.4950 0.9901 0.9901 nan 0.9901 0.0 0.9901
0.0133 36.47 620 0.0241 0.4956 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0118 37.65 640 0.0244 0.4948 0.9896 0.9896 nan 0.9896 0.0 0.9896
0.0133 38.82 660 0.0228 0.4960 0.9921 0.9921 nan 0.9921 0.0 0.9921
0.0197 40.0 680 0.0234 0.4957 0.9914 0.9914 nan 0.9914 0.0 0.9914
0.0168 41.18 700 0.0232 0.4961 0.9922 0.9922 nan 0.9922 0.0 0.9922
0.0119 42.35 720 0.0234 0.4957 0.9914 0.9914 nan 0.9914 0.0 0.9914
0.0155 43.53 740 0.0243 0.4950 0.9900 0.9900 nan 0.9900 0.0 0.9900
0.0126 44.71 760 0.0242 0.4949 0.9897 0.9897 nan 0.9897 0.0 0.9897
0.0129 45.88 780 0.0242 0.4955 0.9910 0.9910 nan 0.9910 0.0 0.9910
0.0116 47.06 800 0.0238 0.4953 0.9906 0.9906 nan 0.9906 0.0 0.9906
0.0122 48.24 820 0.0239 0.4954 0.9908 0.9908 nan 0.9908 0.0 0.9908
0.0164 49.41 840 0.0236 0.4952 0.9903 0.9903 nan 0.9903 0.0 0.9903

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.13.3