HorcruxNo13 commited on
Commit
d91db74
1 Parent(s): 42a420f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -53
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  license: other
3
  tags:
 
 
4
  - generated_from_trainer
5
  model-index:
6
  - name: segformer-b0-finetuned-segments-toolwear
@@ -12,18 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # segformer-b0-finetuned-segments-toolwear
14
 
15
- This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.1009
18
- - Mean Iou: 0.2182
19
- - Mean Accuracy: 0.4365
20
- - Overall Accuracy: 0.4365
21
  - Accuracy Unlabeled: nan
22
- - Accuracy Tool: nan
23
- - Accuracy Wear: 0.4365
24
  - Iou Unlabeled: 0.0
25
- - Iou Tool: nan
26
- - Iou Wear: 0.4365
27
 
28
  ## Model description
29
 
@@ -52,50 +52,50 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
56
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
57
- | 0.8747 | 1.18 | 20 | 0.9764 | 0.1788 | 0.5363 | 0.5363 | nan | nan | 0.5363 | 0.0 | 0.0 | 0.5363 |
58
- | 0.6206 | 2.35 | 40 | 0.6394 | 0.1860 | 0.3719 | 0.3719 | nan | nan | 0.3719 | 0.0 | nan | 0.3719 |
59
- | 0.4963 | 3.53 | 60 | 0.4309 | 0.2230 | 0.4460 | 0.4460 | nan | nan | 0.4460 | 0.0 | nan | 0.4460 |
60
- | 0.3978 | 4.71 | 80 | 0.3839 | 0.3231 | 0.6463 | 0.6463 | nan | nan | 0.6463 | 0.0 | nan | 0.6463 |
61
- | 0.3171 | 5.88 | 100 | 0.3193 | 0.2653 | 0.5306 | 0.5306 | nan | nan | 0.5306 | 0.0 | nan | 0.5306 |
62
- | 0.3046 | 7.06 | 120 | 0.2760 | 0.1372 | 0.2745 | 0.2745 | nan | nan | 0.2745 | 0.0 | nan | 0.2745 |
63
- | 0.2558 | 8.24 | 140 | 0.2181 | 0.2549 | 0.5097 | 0.5097 | nan | nan | 0.5097 | 0.0 | nan | 0.5097 |
64
- | 0.225 | 9.41 | 160 | 0.1933 | 0.2673 | 0.5345 | 0.5345 | nan | nan | 0.5345 | 0.0 | nan | 0.5345 |
65
- | 0.1532 | 10.59 | 180 | 0.1735 | 0.2673 | 0.5346 | 0.5346 | nan | nan | 0.5346 | 0.0 | nan | 0.5346 |
66
- | 0.1505 | 11.76 | 200 | 0.1660 | 0.1857 | 0.3715 | 0.3715 | nan | nan | 0.3715 | 0.0 | nan | 0.3715 |
67
- | 0.1222 | 12.94 | 220 | 0.1641 | 0.1508 | 0.3016 | 0.3016 | nan | nan | 0.3016 | 0.0 | nan | 0.3016 |
68
- | 0.0921 | 14.12 | 240 | 0.1363 | 0.2869 | 0.5738 | 0.5738 | nan | nan | 0.5738 | 0.0 | nan | 0.5738 |
69
- | 0.0792 | 15.29 | 260 | 0.1300 | 0.2245 | 0.4491 | 0.4491 | nan | nan | 0.4491 | 0.0 | nan | 0.4491 |
70
- | 0.0804 | 16.47 | 280 | 0.1338 | 0.1910 | 0.3820 | 0.3820 | nan | nan | 0.3820 | 0.0 | nan | 0.3820 |
71
- | 0.0732 | 17.65 | 300 | 0.1118 | 0.2583 | 0.5166 | 0.5166 | nan | nan | 0.5166 | 0.0 | nan | 0.5166 |
72
- | 0.062 | 18.82 | 320 | 0.1102 | 0.2432 | 0.4864 | 0.4864 | nan | nan | 0.4864 | 0.0 | nan | 0.4864 |
73
- | 0.0582 | 20.0 | 340 | 0.1023 | 0.2547 | 0.5095 | 0.5095 | nan | nan | 0.5095 | 0.0 | nan | 0.5095 |
74
- | 0.056 | 21.18 | 360 | 0.1151 | 0.2111 | 0.4222 | 0.4222 | nan | nan | 0.4222 | 0.0 | nan | 0.4222 |
75
- | 0.0493 | 22.35 | 380 | 0.1126 | 0.2045 | 0.4089 | 0.4089 | nan | nan | 0.4089 | 0.0 | nan | 0.4089 |
76
- | 0.0633 | 23.53 | 400 | 0.1065 | 0.2220 | 0.4440 | 0.4440 | nan | nan | 0.4440 | 0.0 | nan | 0.4440 |
77
- | 0.0438 | 24.71 | 420 | 0.0987 | 0.2558 | 0.5116 | 0.5116 | nan | nan | 0.5116 | 0.0 | nan | 0.5116 |
78
- | 0.0451 | 25.88 | 440 | 0.1060 | 0.2326 | 0.4652 | 0.4652 | nan | nan | 0.4652 | 0.0 | nan | 0.4652 |
79
- | 0.0426 | 27.06 | 460 | 0.0981 | 0.2493 | 0.4986 | 0.4986 | nan | nan | 0.4986 | 0.0 | nan | 0.4986 |
80
- | 0.0397 | 28.24 | 480 | 0.0955 | 0.2485 | 0.4970 | 0.4970 | nan | nan | 0.4970 | 0.0 | nan | 0.4970 |
81
- | 0.0349 | 29.41 | 500 | 0.0991 | 0.2321 | 0.4641 | 0.4641 | nan | nan | 0.4641 | 0.0 | nan | 0.4641 |
82
- | 0.0337 | 30.59 | 520 | 0.1048 | 0.2111 | 0.4222 | 0.4222 | nan | nan | 0.4222 | 0.0 | nan | 0.4222 |
83
- | 0.0358 | 31.76 | 540 | 0.0870 | 0.2856 | 0.5712 | 0.5712 | nan | nan | 0.5712 | 0.0 | nan | 0.5712 |
84
- | 0.0322 | 32.94 | 560 | 0.1061 | 0.2085 | 0.4170 | 0.4170 | nan | nan | 0.4170 | 0.0 | nan | 0.4170 |
85
- | 0.028 | 34.12 | 580 | 0.0950 | 0.2399 | 0.4798 | 0.4798 | nan | nan | 0.4798 | 0.0 | nan | 0.4798 |
86
- | 0.0282 | 35.29 | 600 | 0.0880 | 0.2667 | 0.5335 | 0.5335 | nan | nan | 0.5335 | 0.0 | nan | 0.5335 |
87
- | 0.0266 | 36.47 | 620 | 0.0952 | 0.2457 | 0.4914 | 0.4914 | nan | nan | 0.4914 | 0.0 | nan | 0.4914 |
88
- | 0.0276 | 37.65 | 640 | 0.0994 | 0.2329 | 0.4658 | 0.4658 | nan | nan | 0.4658 | 0.0 | nan | 0.4658 |
89
- | 0.0306 | 38.82 | 660 | 0.0978 | 0.2314 | 0.4627 | 0.4627 | nan | nan | 0.4627 | 0.0 | nan | 0.4627 |
90
- | 0.0337 | 40.0 | 680 | 0.0949 | 0.2404 | 0.4809 | 0.4809 | nan | nan | 0.4809 | 0.0 | nan | 0.4809 |
91
- | 0.0243 | 41.18 | 700 | 0.0948 | 0.2382 | 0.4765 | 0.4765 | nan | nan | 0.4765 | 0.0 | nan | 0.4765 |
92
- | 0.0278 | 42.35 | 720 | 0.0978 | 0.2328 | 0.4655 | 0.4655 | nan | nan | 0.4655 | 0.0 | nan | 0.4655 |
93
- | 0.0317 | 43.53 | 740 | 0.0975 | 0.2337 | 0.4675 | 0.4675 | nan | nan | 0.4675 | 0.0 | nan | 0.4675 |
94
- | 0.0321 | 44.71 | 760 | 0.0981 | 0.2331 | 0.4663 | 0.4663 | nan | nan | 0.4663 | 0.0 | nan | 0.4663 |
95
- | 0.0318 | 45.88 | 780 | 0.0955 | 0.2374 | 0.4748 | 0.4748 | nan | nan | 0.4748 | 0.0 | nan | 0.4748 |
96
- | 0.0268 | 47.06 | 800 | 0.0963 | 0.2358 | 0.4715 | 0.4715 | nan | nan | 0.4715 | 0.0 | nan | 0.4715 |
97
- | 0.0268 | 48.24 | 820 | 0.1001 | 0.2229 | 0.4459 | 0.4459 | nan | nan | 0.4459 | 0.0 | nan | 0.4459 |
98
- | 0.0314 | 49.41 | 840 | 0.1009 | 0.2182 | 0.4365 | 0.4365 | nan | nan | 0.4365 | 0.0 | nan | 0.4365 |
99
 
100
 
101
  ### Framework versions
 
1
  ---
2
  license: other
3
  tags:
4
+ - vision
5
+ - image-segmentation
6
  - generated_from_trainer
7
  model-index:
8
  - name: segformer-b0-finetuned-segments-toolwear
 
14
 
15
  # segformer-b0-finetuned-segments-toolwear
16
 
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_complete_tool dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.0236
20
+ - Mean Iou: 0.4952
21
+ - Mean Accuracy: 0.9903
22
+ - Overall Accuracy: 0.9903
23
  - Accuracy Unlabeled: nan
24
+ - Accuracy Tool: 0.9903
 
25
  - Iou Unlabeled: 0.0
26
+ - Iou Tool: 0.9903
 
27
 
28
  ## Model description
29
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
57
+ | 0.1696 | 1.18 | 20 | 0.3490 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
58
+ | 0.1045 | 2.35 | 40 | 0.0977 | 0.4878 | 0.9755 | 0.9755 | nan | 0.9755 | 0.0 | 0.9755 |
59
+ | 0.0871 | 3.53 | 60 | 0.0650 | 0.4953 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
60
+ | 0.0542 | 4.71 | 80 | 0.0652 | 0.4956 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
61
+ | 0.0507 | 5.88 | 100 | 0.0573 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
62
+ | 0.0702 | 7.06 | 120 | 0.0510 | 0.4942 | 0.9883 | 0.9883 | nan | 0.9883 | 0.0 | 0.9883 |
63
+ | 0.0455 | 8.24 | 140 | 0.0487 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 |
64
+ | 0.049 | 9.41 | 160 | 0.0430 | 0.4934 | 0.9867 | 0.9867 | nan | 0.9867 | 0.0 | 0.9867 |
65
+ | 0.048 | 10.59 | 180 | 0.0409 | 0.4940 | 0.9881 | 0.9881 | nan | 0.9881 | 0.0 | 0.9881 |
66
+ | 0.0476 | 11.76 | 200 | 0.0347 | 0.4965 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 | 0.9931 |
67
+ | 0.048 | 12.94 | 220 | 0.0366 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 |
68
+ | 0.0242 | 14.12 | 240 | 0.0341 | 0.4963 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 | 0.9926 |
69
+ | 0.0274 | 15.29 | 260 | 0.0305 | 0.4966 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
70
+ | 0.0192 | 16.47 | 280 | 0.0318 | 0.4956 | 0.9913 | 0.9913 | nan | 0.9913 | 0.0 | 0.9913 |
71
+ | 0.0388 | 17.65 | 300 | 0.0280 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
72
+ | 0.0245 | 18.82 | 320 | 0.0280 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 |
73
+ | 0.0268 | 20.0 | 340 | 0.0268 | 0.4949 | 0.9899 | 0.9899 | nan | 0.9899 | 0.0 | 0.9899 |
74
+ | 0.0173 | 21.18 | 360 | 0.0278 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 |
75
+ | 0.0275 | 22.35 | 380 | 0.0270 | 0.4957 | 0.9914 | 0.9914 | nan | 0.9914 | 0.0 | 0.9914 |
76
+ | 0.0269 | 23.53 | 400 | 0.0271 | 0.4950 | 0.9899 | 0.9899 | nan | 0.9899 | 0.0 | 0.9899 |
77
+ | 0.0371 | 24.71 | 420 | 0.0252 | 0.4938 | 0.9876 | 0.9876 | nan | 0.9876 | 0.0 | 0.9876 |
78
+ | 0.0233 | 25.88 | 440 | 0.0264 | 0.4933 | 0.9867 | 0.9867 | nan | 0.9867 | 0.0 | 0.9867 |
79
+ | 0.0181 | 27.06 | 460 | 0.0257 | 0.4959 | 0.9918 | 0.9918 | nan | 0.9918 | 0.0 | 0.9918 |
80
+ | 0.0243 | 28.24 | 480 | 0.0255 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 |
81
+ | 0.0144 | 29.41 | 500 | 0.0244 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
82
+ | 0.0158 | 30.59 | 520 | 0.0251 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 |
83
+ | 0.017 | 31.76 | 540 | 0.0247 | 0.4955 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
84
+ | 0.0179 | 32.94 | 560 | 0.0237 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
85
+ | 0.0162 | 34.12 | 580 | 0.0238 | 0.4956 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
86
+ | 0.0191 | 35.29 | 600 | 0.0241 | 0.4950 | 0.9901 | 0.9901 | nan | 0.9901 | 0.0 | 0.9901 |
87
+ | 0.0133 | 36.47 | 620 | 0.0241 | 0.4956 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
88
+ | 0.0118 | 37.65 | 640 | 0.0244 | 0.4948 | 0.9896 | 0.9896 | nan | 0.9896 | 0.0 | 0.9896 |
89
+ | 0.0133 | 38.82 | 660 | 0.0228 | 0.4960 | 0.9921 | 0.9921 | nan | 0.9921 | 0.0 | 0.9921 |
90
+ | 0.0197 | 40.0 | 680 | 0.0234 | 0.4957 | 0.9914 | 0.9914 | nan | 0.9914 | 0.0 | 0.9914 |
91
+ | 0.0168 | 41.18 | 700 | 0.0232 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
92
+ | 0.0119 | 42.35 | 720 | 0.0234 | 0.4957 | 0.9914 | 0.9914 | nan | 0.9914 | 0.0 | 0.9914 |
93
+ | 0.0155 | 43.53 | 740 | 0.0243 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
94
+ | 0.0126 | 44.71 | 760 | 0.0242 | 0.4949 | 0.9897 | 0.9897 | nan | 0.9897 | 0.0 | 0.9897 |
95
+ | 0.0129 | 45.88 | 780 | 0.0242 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 |
96
+ | 0.0116 | 47.06 | 800 | 0.0238 | 0.4953 | 0.9906 | 0.9906 | nan | 0.9906 | 0.0 | 0.9906 |
97
+ | 0.0122 | 48.24 | 820 | 0.0239 | 0.4954 | 0.9908 | 0.9908 | nan | 0.9908 | 0.0 | 0.9908 |
98
+ | 0.0164 | 49.41 | 840 | 0.0236 | 0.4952 | 0.9903 | 0.9903 | nan | 0.9903 | 0.0 | 0.9903 |
99
 
100
 
101
  ### Framework versions