HorcruxNo13's picture
update model card README.md
a37b223
|
raw
history blame
8.38 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0236
  • Mean Iou: 0.4952
  • Mean Accuracy: 0.9904
  • Overall Accuracy: 0.9904
  • Accuracy Unlabeled: nan
  • Accuracy Tool: 0.9904
  • Iou Unlabeled: 0.0
  • Iou Tool: 0.9904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Iou Unlabeled Iou Tool
0.1696 1.18 20 0.3490 0.4962 0.9924 0.9924 nan 0.9924 0.0 0.9924
0.1045 2.35 40 0.0977 0.4878 0.9755 0.9755 nan 0.9755 0.0 0.9755
0.0871 3.53 60 0.0650 0.4952 0.9905 0.9905 nan 0.9905 0.0 0.9905
0.0542 4.71 80 0.0652 0.4956 0.9912 0.9912 nan 0.9912 0.0 0.9912
0.0507 5.88 100 0.0573 0.4952 0.9905 0.9905 nan 0.9905 0.0 0.9905
0.071 7.06 120 0.0510 0.4941 0.9883 0.9883 nan 0.9883 0.0 0.9883
0.0456 8.24 140 0.0487 0.4892 0.9785 0.9785 nan 0.9785 0.0 0.9785
0.0489 9.41 160 0.0430 0.4934 0.9867 0.9867 nan 0.9867 0.0 0.9867
0.048 10.59 180 0.0409 0.4940 0.9881 0.9881 nan 0.9881 0.0 0.9881
0.0476 11.76 200 0.0347 0.4966 0.9931 0.9931 nan 0.9931 0.0 0.9931
0.0479 12.94 220 0.0367 0.4972 0.9945 0.9945 nan 0.9945 0.0 0.9945
0.0242 14.12 240 0.0342 0.4962 0.9925 0.9925 nan 0.9925 0.0 0.9925
0.0277 15.29 260 0.0305 0.4967 0.9934 0.9934 nan 0.9934 0.0 0.9934
0.0192 16.47 280 0.0318 0.4956 0.9913 0.9913 nan 0.9913 0.0 0.9913
0.038 17.65 300 0.0284 0.4965 0.9929 0.9929 nan 0.9929 0.0 0.9929
0.0244 18.82 320 0.0280 0.4953 0.9906 0.9906 nan 0.9906 0.0 0.9906
0.0273 20.0 340 0.0269 0.4955 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0174 21.18 360 0.0280 0.4955 0.9910 0.9910 nan 0.9910 0.0 0.9910
0.0277 22.35 380 0.0270 0.4957 0.9914 0.9914 nan 0.9914 0.0 0.9914
0.0269 23.53 400 0.0271 0.4950 0.9901 0.9901 nan 0.9901 0.0 0.9901
0.0372 24.71 420 0.0252 0.4939 0.9879 0.9879 nan 0.9879 0.0 0.9879
0.023 25.88 440 0.0263 0.4935 0.9870 0.9870 nan 0.9870 0.0 0.9870
0.0183 27.06 460 0.0257 0.4960 0.9920 0.9920 nan 0.9920 0.0 0.9920
0.024 28.24 480 0.0256 0.4950 0.9900 0.9900 nan 0.9900 0.0 0.9900
0.0145 29.41 500 0.0245 0.4956 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0158 30.59 520 0.0250 0.4947 0.9895 0.9895 nan 0.9895 0.0 0.9895
0.0169 31.76 540 0.0247 0.4956 0.9912 0.9912 nan 0.9912 0.0 0.9912
0.018 32.94 560 0.0237 0.4965 0.9930 0.9930 nan 0.9930 0.0 0.9930
0.0161 34.12 580 0.0237 0.4956 0.9913 0.9913 nan 0.9913 0.0 0.9913
0.0191 35.29 600 0.0241 0.4951 0.9901 0.9901 nan 0.9901 0.0 0.9901
0.0133 36.47 620 0.0240 0.4956 0.9912 0.9912 nan 0.9912 0.0 0.9912
0.0118 37.65 640 0.0244 0.4949 0.9897 0.9897 nan 0.9897 0.0 0.9897
0.0133 38.82 660 0.0229 0.4961 0.9922 0.9922 nan 0.9922 0.0 0.9922
0.0198 40.0 680 0.0236 0.4958 0.9915 0.9915 nan 0.9915 0.0 0.9915
0.0168 41.18 700 0.0234 0.4961 0.9923 0.9923 nan 0.9923 0.0 0.9923
0.0119 42.35 720 0.0233 0.4957 0.9915 0.9915 nan 0.9915 0.0 0.9915
0.0154 43.53 740 0.0243 0.4950 0.9901 0.9901 nan 0.9901 0.0 0.9901
0.0126 44.71 760 0.0242 0.4949 0.9898 0.9898 nan 0.9898 0.0 0.9898
0.0128 45.88 780 0.0243 0.4955 0.9911 0.9911 nan 0.9911 0.0 0.9911
0.0116 47.06 800 0.0239 0.4953 0.9907 0.9907 nan 0.9907 0.0 0.9907
0.0121 48.24 820 0.0239 0.4954 0.9909 0.9909 nan 0.9909 0.0 0.9909
0.0164 49.41 840 0.0236 0.4952 0.9904 0.9904 nan 0.9904 0.0 0.9904

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.13.3