File size: 8,379 Bytes
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
a37b223
b3fd691
865127f
 
 
 
b3fd691
865127f
b3fd691
865127f
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
 
 
865127f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
693ebf3
 
b3fd691
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0236
- Mean Iou: 0.4952
- Mean Accuracy: 0.9904
- Overall Accuracy: 0.9904
- Accuracy Unlabeled: nan
- Accuracy Tool: 0.9904
- Iou Unlabeled: 0.0
- Iou Tool: 0.9904

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
| 0.1696        | 1.18  | 20   | 0.3490          | 0.4962   | 0.9924        | 0.9924           | nan                | 0.9924        | 0.0           | 0.9924   |
| 0.1045        | 2.35  | 40   | 0.0977          | 0.4878   | 0.9755        | 0.9755           | nan                | 0.9755        | 0.0           | 0.9755   |
| 0.0871        | 3.53  | 60   | 0.0650          | 0.4952   | 0.9905        | 0.9905           | nan                | 0.9905        | 0.0           | 0.9905   |
| 0.0542        | 4.71  | 80   | 0.0652          | 0.4956   | 0.9912        | 0.9912           | nan                | 0.9912        | 0.0           | 0.9912   |
| 0.0507        | 5.88  | 100  | 0.0573          | 0.4952   | 0.9905        | 0.9905           | nan                | 0.9905        | 0.0           | 0.9905   |
| 0.071         | 7.06  | 120  | 0.0510          | 0.4941   | 0.9883        | 0.9883           | nan                | 0.9883        | 0.0           | 0.9883   |
| 0.0456        | 8.24  | 140  | 0.0487          | 0.4892   | 0.9785        | 0.9785           | nan                | 0.9785        | 0.0           | 0.9785   |
| 0.0489        | 9.41  | 160  | 0.0430          | 0.4934   | 0.9867        | 0.9867           | nan                | 0.9867        | 0.0           | 0.9867   |
| 0.048         | 10.59 | 180  | 0.0409          | 0.4940   | 0.9881        | 0.9881           | nan                | 0.9881        | 0.0           | 0.9881   |
| 0.0476        | 11.76 | 200  | 0.0347          | 0.4966   | 0.9931        | 0.9931           | nan                | 0.9931        | 0.0           | 0.9931   |
| 0.0479        | 12.94 | 220  | 0.0367          | 0.4972   | 0.9945        | 0.9945           | nan                | 0.9945        | 0.0           | 0.9945   |
| 0.0242        | 14.12 | 240  | 0.0342          | 0.4962   | 0.9925        | 0.9925           | nan                | 0.9925        | 0.0           | 0.9925   |
| 0.0277        | 15.29 | 260  | 0.0305          | 0.4967   | 0.9934        | 0.9934           | nan                | 0.9934        | 0.0           | 0.9934   |
| 0.0192        | 16.47 | 280  | 0.0318          | 0.4956   | 0.9913        | 0.9913           | nan                | 0.9913        | 0.0           | 0.9913   |
| 0.038         | 17.65 | 300  | 0.0284          | 0.4965   | 0.9929        | 0.9929           | nan                | 0.9929        | 0.0           | 0.9929   |
| 0.0244        | 18.82 | 320  | 0.0280          | 0.4953   | 0.9906        | 0.9906           | nan                | 0.9906        | 0.0           | 0.9906   |
| 0.0273        | 20.0  | 340  | 0.0269          | 0.4955   | 0.9911        | 0.9911           | nan                | 0.9911        | 0.0           | 0.9911   |
| 0.0174        | 21.18 | 360  | 0.0280          | 0.4955   | 0.9910        | 0.9910           | nan                | 0.9910        | 0.0           | 0.9910   |
| 0.0277        | 22.35 | 380  | 0.0270          | 0.4957   | 0.9914        | 0.9914           | nan                | 0.9914        | 0.0           | 0.9914   |
| 0.0269        | 23.53 | 400  | 0.0271          | 0.4950   | 0.9901        | 0.9901           | nan                | 0.9901        | 0.0           | 0.9901   |
| 0.0372        | 24.71 | 420  | 0.0252          | 0.4939   | 0.9879        | 0.9879           | nan                | 0.9879        | 0.0           | 0.9879   |
| 0.023         | 25.88 | 440  | 0.0263          | 0.4935   | 0.9870        | 0.9870           | nan                | 0.9870        | 0.0           | 0.9870   |
| 0.0183        | 27.06 | 460  | 0.0257          | 0.4960   | 0.9920        | 0.9920           | nan                | 0.9920        | 0.0           | 0.9920   |
| 0.024         | 28.24 | 480  | 0.0256          | 0.4950   | 0.9900        | 0.9900           | nan                | 0.9900        | 0.0           | 0.9900   |
| 0.0145        | 29.41 | 500  | 0.0245          | 0.4956   | 0.9911        | 0.9911           | nan                | 0.9911        | 0.0           | 0.9911   |
| 0.0158        | 30.59 | 520  | 0.0250          | 0.4947   | 0.9895        | 0.9895           | nan                | 0.9895        | 0.0           | 0.9895   |
| 0.0169        | 31.76 | 540  | 0.0247          | 0.4956   | 0.9912        | 0.9912           | nan                | 0.9912        | 0.0           | 0.9912   |
| 0.018         | 32.94 | 560  | 0.0237          | 0.4965   | 0.9930        | 0.9930           | nan                | 0.9930        | 0.0           | 0.9930   |
| 0.0161        | 34.12 | 580  | 0.0237          | 0.4956   | 0.9913        | 0.9913           | nan                | 0.9913        | 0.0           | 0.9913   |
| 0.0191        | 35.29 | 600  | 0.0241          | 0.4951   | 0.9901        | 0.9901           | nan                | 0.9901        | 0.0           | 0.9901   |
| 0.0133        | 36.47 | 620  | 0.0240          | 0.4956   | 0.9912        | 0.9912           | nan                | 0.9912        | 0.0           | 0.9912   |
| 0.0118        | 37.65 | 640  | 0.0244          | 0.4949   | 0.9897        | 0.9897           | nan                | 0.9897        | 0.0           | 0.9897   |
| 0.0133        | 38.82 | 660  | 0.0229          | 0.4961   | 0.9922        | 0.9922           | nan                | 0.9922        | 0.0           | 0.9922   |
| 0.0198        | 40.0  | 680  | 0.0236          | 0.4958   | 0.9915        | 0.9915           | nan                | 0.9915        | 0.0           | 0.9915   |
| 0.0168        | 41.18 | 700  | 0.0234          | 0.4961   | 0.9923        | 0.9923           | nan                | 0.9923        | 0.0           | 0.9923   |
| 0.0119        | 42.35 | 720  | 0.0233          | 0.4957   | 0.9915        | 0.9915           | nan                | 0.9915        | 0.0           | 0.9915   |
| 0.0154        | 43.53 | 740  | 0.0243          | 0.4950   | 0.9901        | 0.9901           | nan                | 0.9901        | 0.0           | 0.9901   |
| 0.0126        | 44.71 | 760  | 0.0242          | 0.4949   | 0.9898        | 0.9898           | nan                | 0.9898        | 0.0           | 0.9898   |
| 0.0128        | 45.88 | 780  | 0.0243          | 0.4955   | 0.9911        | 0.9911           | nan                | 0.9911        | 0.0           | 0.9911   |
| 0.0116        | 47.06 | 800  | 0.0239          | 0.4953   | 0.9907        | 0.9907           | nan                | 0.9907        | 0.0           | 0.9907   |
| 0.0121        | 48.24 | 820  | 0.0239          | 0.4954   | 0.9909        | 0.9909           | nan                | 0.9909        | 0.0           | 0.9909   |
| 0.0164        | 49.41 | 840  | 0.0236          | 0.4952   | 0.9904        | 0.9904           | nan                | 0.9904        | 0.0           | 0.9904   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.13.3