HorcruxNo13's picture
update model card README.md
50c128c
|
raw
history blame
6.03 kB
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on the HorcruxNo13/toolwear_segmentsai_tools dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0341
  • Mean Iou: 0.4939
  • Mean Accuracy: 0.9878
  • Overall Accuracy: 0.9878
  • Accuracy Unlabeled: nan
  • Accuracy Tool: 0.9878
  • Iou Unlabeled: 0.0
  • Iou Tool: 0.9878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Iou Unlabeled Iou Tool
0.2127 1.82 20 0.3537 0.4996 0.9991 0.9991 nan 0.9991 0.0 0.9991
0.2095 3.64 40 0.1407 0.4987 0.9974 0.9974 nan 0.9974 0.0 0.9974
0.1253 5.45 60 0.1011 0.4970 0.9940 0.9940 nan 0.9940 0.0 0.9940
0.0812 7.27 80 0.0821 0.4957 0.9914 0.9914 nan 0.9914 0.0 0.9914
0.0841 9.09 100 0.0652 0.4926 0.9851 0.9851 nan 0.9851 0.0 0.9851
0.0574 10.91 120 0.0612 0.4930 0.9861 0.9861 nan 0.9861 0.0 0.9861
0.047 12.73 140 0.0562 0.4940 0.9880 0.9880 nan 0.9880 0.0 0.9880
0.0542 14.55 160 0.0488 0.4937 0.9874 0.9874 nan 0.9874 0.0 0.9874
0.0405 16.36 180 0.0487 0.4958 0.9916 0.9916 nan 0.9916 0.0 0.9916
0.045 18.18 200 0.0484 0.4964 0.9929 0.9929 nan 0.9929 0.0 0.9929
0.0487 20.0 220 0.0412 0.4936 0.9873 0.9873 nan 0.9873 0.0 0.9873
0.0417 21.82 240 0.0397 0.4936 0.9872 0.9872 nan 0.9872 0.0 0.9872
0.0525 23.64 260 0.0393 0.4934 0.9868 0.9868 nan 0.9868 0.0 0.9868
0.0425 25.45 280 0.0381 0.4930 0.9861 0.9861 nan 0.9861 0.0 0.9861
0.0386 27.27 300 0.0393 0.4927 0.9855 0.9855 nan 0.9855 0.0 0.9855
0.0239 29.09 320 0.0387 0.4933 0.9866 0.9866 nan 0.9866 0.0 0.9866
0.0279 30.91 340 0.0369 0.4941 0.9882 0.9882 nan 0.9882 0.0 0.9882
0.0194 32.73 360 0.0368 0.4916 0.9832 0.9832 nan 0.9832 0.0 0.9832
0.0238 34.55 380 0.0370 0.4937 0.9874 0.9874 nan 0.9874 0.0 0.9874
0.0281 36.36 400 0.0347 0.4930 0.9859 0.9859 nan 0.9859 0.0 0.9859
0.0218 38.18 420 0.0351 0.4924 0.9848 0.9848 nan 0.9848 0.0 0.9848
0.0197 40.0 440 0.0354 0.4932 0.9864 0.9864 nan 0.9864 0.0 0.9864
0.0197 41.82 460 0.0343 0.4933 0.9865 0.9865 nan 0.9865 0.0 0.9865
0.0231 43.64 480 0.0345 0.4931 0.9862 0.9862 nan 0.9862 0.0 0.9862
0.0223 45.45 500 0.0346 0.4938 0.9875 0.9875 nan 0.9875 0.0 0.9875
0.0184 47.27 520 0.0340 0.4927 0.9854 0.9854 nan 0.9854 0.0 0.9854
0.0202 49.09 540 0.0341 0.4939 0.9878 0.9878 nan 0.9878 0.0 0.9878

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3