File size: 6,025 Bytes
b3fd691
 
 
50c128c
 
b3fd691
 
 
 
 
 
 
 
 
 
 
50c128c
b3fd691
50c128c
 
 
 
b3fd691
50c128c
b3fd691
50c128c
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
 
 
50c128c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai_tools dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0341
- Mean Iou: 0.4939
- Mean Accuracy: 0.9878
- Overall Accuracy: 0.9878
- Accuracy Unlabeled: nan
- Accuracy Tool: 0.9878
- Iou Unlabeled: 0.0
- Iou Tool: 0.9878

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
| 0.2127        | 1.82  | 20   | 0.3537          | 0.4996   | 0.9991        | 0.9991           | nan                | 0.9991        | 0.0           | 0.9991   |
| 0.2095        | 3.64  | 40   | 0.1407          | 0.4987   | 0.9974        | 0.9974           | nan                | 0.9974        | 0.0           | 0.9974   |
| 0.1253        | 5.45  | 60   | 0.1011          | 0.4970   | 0.9940        | 0.9940           | nan                | 0.9940        | 0.0           | 0.9940   |
| 0.0812        | 7.27  | 80   | 0.0821          | 0.4957   | 0.9914        | 0.9914           | nan                | 0.9914        | 0.0           | 0.9914   |
| 0.0841        | 9.09  | 100  | 0.0652          | 0.4926   | 0.9851        | 0.9851           | nan                | 0.9851        | 0.0           | 0.9851   |
| 0.0574        | 10.91 | 120  | 0.0612          | 0.4930   | 0.9861        | 0.9861           | nan                | 0.9861        | 0.0           | 0.9861   |
| 0.047         | 12.73 | 140  | 0.0562          | 0.4940   | 0.9880        | 0.9880           | nan                | 0.9880        | 0.0           | 0.9880   |
| 0.0542        | 14.55 | 160  | 0.0488          | 0.4937   | 0.9874        | 0.9874           | nan                | 0.9874        | 0.0           | 0.9874   |
| 0.0405        | 16.36 | 180  | 0.0487          | 0.4958   | 0.9916        | 0.9916           | nan                | 0.9916        | 0.0           | 0.9916   |
| 0.045         | 18.18 | 200  | 0.0484          | 0.4964   | 0.9929        | 0.9929           | nan                | 0.9929        | 0.0           | 0.9929   |
| 0.0487        | 20.0  | 220  | 0.0412          | 0.4936   | 0.9873        | 0.9873           | nan                | 0.9873        | 0.0           | 0.9873   |
| 0.0417        | 21.82 | 240  | 0.0397          | 0.4936   | 0.9872        | 0.9872           | nan                | 0.9872        | 0.0           | 0.9872   |
| 0.0525        | 23.64 | 260  | 0.0393          | 0.4934   | 0.9868        | 0.9868           | nan                | 0.9868        | 0.0           | 0.9868   |
| 0.0425        | 25.45 | 280  | 0.0381          | 0.4930   | 0.9861        | 0.9861           | nan                | 0.9861        | 0.0           | 0.9861   |
| 0.0386        | 27.27 | 300  | 0.0393          | 0.4927   | 0.9855        | 0.9855           | nan                | 0.9855        | 0.0           | 0.9855   |
| 0.0239        | 29.09 | 320  | 0.0387          | 0.4933   | 0.9866        | 0.9866           | nan                | 0.9866        | 0.0           | 0.9866   |
| 0.0279        | 30.91 | 340  | 0.0369          | 0.4941   | 0.9882        | 0.9882           | nan                | 0.9882        | 0.0           | 0.9882   |
| 0.0194        | 32.73 | 360  | 0.0368          | 0.4916   | 0.9832        | 0.9832           | nan                | 0.9832        | 0.0           | 0.9832   |
| 0.0238        | 34.55 | 380  | 0.0370          | 0.4937   | 0.9874        | 0.9874           | nan                | 0.9874        | 0.0           | 0.9874   |
| 0.0281        | 36.36 | 400  | 0.0347          | 0.4930   | 0.9859        | 0.9859           | nan                | 0.9859        | 0.0           | 0.9859   |
| 0.0218        | 38.18 | 420  | 0.0351          | 0.4924   | 0.9848        | 0.9848           | nan                | 0.9848        | 0.0           | 0.9848   |
| 0.0197        | 40.0  | 440  | 0.0354          | 0.4932   | 0.9864        | 0.9864           | nan                | 0.9864        | 0.0           | 0.9864   |
| 0.0197        | 41.82 | 460  | 0.0343          | 0.4933   | 0.9865        | 0.9865           | nan                | 0.9865        | 0.0           | 0.9865   |
| 0.0231        | 43.64 | 480  | 0.0345          | 0.4931   | 0.9862        | 0.9862           | nan                | 0.9862        | 0.0           | 0.9862   |
| 0.0223        | 45.45 | 500  | 0.0346          | 0.4938   | 0.9875        | 0.9875           | nan                | 0.9875        | 0.0           | 0.9875   |
| 0.0184        | 47.27 | 520  | 0.0340          | 0.4927   | 0.9854        | 0.9854           | nan                | 0.9854        | 0.0           | 0.9854   |
| 0.0202        | 49.09 | 540  | 0.0341          | 0.4939   | 0.9878        | 0.9878           | nan                | 0.9878        | 0.0           | 0.9878   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3