|
--- |
|
license: other |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-toolwear |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-segments-toolwear |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2168 |
|
- Mean Iou: 0.3007 |
|
- Mean Accuracy: 0.6014 |
|
- Overall Accuracy: 0.6014 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Tool: nan |
|
- Accuracy Wear: 0.6014 |
|
- Iou Unlabeled: 0.0 |
|
- Iou Tool: nan |
|
- Iou Wear: 0.6014 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:| |
|
| 0.9147 | 1.82 | 20 | 0.9308 | 0.3010 | 0.9029 | 0.9029 | nan | nan | 0.9029 | 0.0 | 0.0 | 0.9029 | |
|
| 0.6788 | 3.64 | 40 | 0.6521 | 0.2589 | 0.7768 | 0.7768 | nan | nan | 0.7768 | 0.0 | 0.0 | 0.7768 | |
|
| 0.4559 | 5.45 | 60 | 0.4600 | 0.2663 | 0.7989 | 0.7989 | nan | nan | 0.7989 | 0.0 | 0.0 | 0.7989 | |
|
| 0.3799 | 7.27 | 80 | 0.3767 | 0.2061 | 0.6182 | 0.6182 | nan | nan | 0.6182 | 0.0 | 0.0 | 0.6182 | |
|
| 0.4438 | 9.09 | 100 | 0.3259 | 0.3479 | 0.6958 | 0.6958 | nan | nan | 0.6958 | 0.0 | nan | 0.6958 | |
|
| 0.3534 | 10.91 | 120 | 0.3008 | 0.3057 | 0.6114 | 0.6114 | nan | nan | 0.6114 | 0.0 | nan | 0.6114 | |
|
| 0.3332 | 12.73 | 140 | 0.2805 | 0.3631 | 0.7261 | 0.7261 | nan | nan | 0.7261 | 0.0 | nan | 0.7261 | |
|
| 0.2543 | 14.55 | 160 | 0.2659 | 0.2927 | 0.5853 | 0.5853 | nan | nan | 0.5853 | 0.0 | nan | 0.5853 | |
|
| 0.2746 | 16.36 | 180 | 0.2324 | 0.2724 | 0.5449 | 0.5449 | nan | nan | 0.5449 | 0.0 | nan | 0.5449 | |
|
| 0.2532 | 18.18 | 200 | 0.2409 | 0.3597 | 0.7194 | 0.7194 | nan | nan | 0.7194 | 0.0 | nan | 0.7194 | |
|
| 0.2353 | 20.0 | 220 | 0.2369 | 0.3070 | 0.6139 | 0.6139 | nan | nan | 0.6139 | 0.0 | nan | 0.6139 | |
|
| 0.2192 | 21.82 | 240 | 0.2210 | 0.3041 | 0.6083 | 0.6083 | nan | nan | 0.6083 | 0.0 | nan | 0.6083 | |
|
| 0.2469 | 23.64 | 260 | 0.2168 | 0.3007 | 0.6014 | 0.6014 | nan | nan | 0.6014 | 0.0 | nan | 0.6014 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|