--- license: other tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-toolwear results: [] --- # segformer-b0-finetuned-segments-toolwear This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2168 - Mean Iou: 0.3007 - Mean Accuracy: 0.6014 - Overall Accuracy: 0.6014 - Accuracy Unlabeled: nan - Accuracy Tool: nan - Accuracy Wear: 0.6014 - Iou Unlabeled: 0.0 - Iou Tool: nan - Iou Wear: 0.6014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:| | 0.9147 | 1.82 | 20 | 0.9308 | 0.3010 | 0.9029 | 0.9029 | nan | nan | 0.9029 | 0.0 | 0.0 | 0.9029 | | 0.6788 | 3.64 | 40 | 0.6521 | 0.2589 | 0.7768 | 0.7768 | nan | nan | 0.7768 | 0.0 | 0.0 | 0.7768 | | 0.4559 | 5.45 | 60 | 0.4600 | 0.2663 | 0.7989 | 0.7989 | nan | nan | 0.7989 | 0.0 | 0.0 | 0.7989 | | 0.3799 | 7.27 | 80 | 0.3767 | 0.2061 | 0.6182 | 0.6182 | nan | nan | 0.6182 | 0.0 | 0.0 | 0.6182 | | 0.4438 | 9.09 | 100 | 0.3259 | 0.3479 | 0.6958 | 0.6958 | nan | nan | 0.6958 | 0.0 | nan | 0.6958 | | 0.3534 | 10.91 | 120 | 0.3008 | 0.3057 | 0.6114 | 0.6114 | nan | nan | 0.6114 | 0.0 | nan | 0.6114 | | 0.3332 | 12.73 | 140 | 0.2805 | 0.3631 | 0.7261 | 0.7261 | nan | nan | 0.7261 | 0.0 | nan | 0.7261 | | 0.2543 | 14.55 | 160 | 0.2659 | 0.2927 | 0.5853 | 0.5853 | nan | nan | 0.5853 | 0.0 | nan | 0.5853 | | 0.2746 | 16.36 | 180 | 0.2324 | 0.2724 | 0.5449 | 0.5449 | nan | nan | 0.5449 | 0.0 | nan | 0.5449 | | 0.2532 | 18.18 | 200 | 0.2409 | 0.3597 | 0.7194 | 0.7194 | nan | nan | 0.7194 | 0.0 | nan | 0.7194 | | 0.2353 | 20.0 | 220 | 0.2369 | 0.3070 | 0.6139 | 0.6139 | nan | nan | 0.6139 | 0.0 | nan | 0.6139 | | 0.2192 | 21.82 | 240 | 0.2210 | 0.3041 | 0.6083 | 0.6083 | nan | nan | 0.6083 | 0.0 | nan | 0.6083 | | 0.2469 | 23.64 | 260 | 0.2168 | 0.3007 | 0.6014 | 0.6014 | nan | nan | 0.6014 | 0.0 | nan | 0.6014 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3