HorcruxNo13's picture
update model card README.md
36f6190
|
raw
history blame
4.15 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2940
  • Mean Iou: 0.4104
  • Mean Accuracy: 0.8207
  • Overall Accuracy: 0.8207
  • Accuracy Unlabeled: nan
  • Accuracy Tool: nan
  • Accuracy Wear: 0.8207
  • Iou Unlabeled: 0.0
  • Iou Tool: nan
  • Iou Wear: 0.8207

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Accuracy Wear Iou Unlabeled Iou Tool Iou Wear
0.843 1.82 20 0.8832 0.4637 0.9274 0.9274 nan nan 0.9274 0.0 nan 0.9274
0.6849 3.64 40 0.5914 0.4361 0.8722 0.8722 nan nan 0.8722 0.0 nan 0.8722
0.5085 5.45 60 0.5178 0.4628 0.9256 0.9256 nan nan 0.9256 0.0 nan 0.9256
0.4027 7.27 80 0.5099 0.4598 0.9195 0.9195 nan nan 0.9195 0.0 nan 0.9195
0.3536 9.09 100 0.4262 0.4365 0.8730 0.8730 nan nan 0.8730 0.0 nan 0.8730
0.3657 10.91 120 0.3891 0.4228 0.8457 0.8457 nan nan 0.8457 0.0 nan 0.8457
0.3234 12.73 140 0.4221 0.4377 0.8754 0.8754 nan nan 0.8754 0.0 nan 0.8754
0.2874 14.55 160 0.3355 0.4098 0.8197 0.8197 nan nan 0.8197 0.0 nan 0.8197
0.2335 16.36 180 0.3570 0.4266 0.8531 0.8531 nan nan 0.8531 0.0 nan 0.8531
0.2167 18.18 200 0.3238 0.4404 0.8808 0.8808 nan nan 0.8808 0.0 nan 0.8808
0.2201 20.0 220 0.3103 0.4185 0.8370 0.8370 nan nan 0.8370 0.0 nan 0.8370
0.205 21.82 240 0.2881 0.4115 0.8230 0.8230 nan nan 0.8230 0.0 nan 0.8230
0.241 23.64 260 0.2940 0.4104 0.8207 0.8207 nan nan 0.8207 0.0 nan 0.8207

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3